首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   648篇
  免费   2篇
  国内免费   4篇
系统科学   5篇
教育与普及   4篇
理论与方法论   1篇
现状及发展   126篇
研究方法   77篇
综合类   405篇
自然研究   36篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2012年   40篇
  2011年   88篇
  2010年   9篇
  2009年   3篇
  2008年   33篇
  2007年   35篇
  2006年   29篇
  2005年   35篇
  2004年   22篇
  2003年   24篇
  2002年   27篇
  2001年   18篇
  2000年   14篇
  1999年   10篇
  1992年   9篇
  1991年   5篇
  1990年   12篇
  1989年   6篇
  1988年   8篇
  1987年   8篇
  1986年   5篇
  1985年   8篇
  1984年   10篇
  1983年   9篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   10篇
  1978年   9篇
  1977年   12篇
  1976年   17篇
  1975年   3篇
  1974年   7篇
  1973年   5篇
  1972年   15篇
  1971年   20篇
  1970年   14篇
  1969年   4篇
  1968年   11篇
  1967年   3篇
  1966年   8篇
  1965年   8篇
  1960年   1篇
  1956年   1篇
排序方式: 共有654条查询结果,搜索用时 31 毫秒
1.
The seeding of an expanse of surface waters in the equatorial Pacific Ocean with low concentrations of dissolved iron triggered a massive phytoplankton bloom which consumed large quantities of carbon dioxide and nitrate that these microscopic plants cannot fully utilize under natural conditions. These and other observations provide unequivocal support for the hypothesis that phytoplankton growth in this oceanic region is limited by iron bioavailability.  相似文献   
2.
Optical imaging is a promising method to identify and locate 2D materials efficiently and non-invasively. By putting a 2D material on a substrate, the nanolayer will add to an optical path and create a contrast to the case when the nanolayer is absent. This optical contrast imaging can be used to identify the 2D material and its number of layers. To make the optical imaging process in the laboratories an effective tool, Fresnel Law as a model was used to simulate the optical imaging results of 2D materials(graphene, Mo S2 and MoSe_2) on top of different thickness of SiO_2 and Si wafer in the present investigation. The results provide the details of the optimal conditions(optimal light wavelength and optimal SiO_2 thickness) to identify and locate single to few 2D nanolayers, which can be used directly in laboratories. The optical contrasts of 1–5 layers of molybdenum disulfide(MoS_2) and molybdenum diselenide(MoSe_2) were simulated. To the best of our knowledge, it is the first time that the optical contrast results of MoSe_2 have been reported. In particular, this work highlights the sensitivity of the model on the accuracy of the refractive indices used. It is demonstrated that through computational modeling that optical contrast can allow effective determination of number of layers in few layer 2D materials.  相似文献   
3.
In 1837, Dirichlet proved that there are infinitely many primes in any arithmetic progression in which the terms do not all share a common factor. We survey implicit and explicit uses of Dirichlet characters in presentations of Dirichlet’s proof in the nineteenth and early twentieth centuries, with an eye toward understanding some of the pragmatic pressures that shaped the evolution of modern mathematical method.  相似文献   
4.
5.
Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.  相似文献   
6.
Koebel CM  Vermi W  Swann JB  Zerafa N  Rodig SJ  Old LJ  Smyth MJ  Schreiber RD 《Nature》2007,450(7171):903-907
The capacity of immunity to control and shape cancer, that is, cancer immunoediting, is the result of three processes that function either independently or in sequence: elimination (cancer immunosurveillance, in which immunity functions as an extrinsic tumour suppressor in naive hosts); equilibrium (expansion of transformed cells is held in check by immunity); and escape (tumour cell variants with dampened immunogenicity or the capacity to attenuate immune responses grow into clinically apparent cancers). Extensive experimental support now exists for the elimination and escape processes because immunodeficient mice develop more carcinogen-induced and spontaneous cancers than wild-type mice, and tumour cells from immunodeficient mice are more immunogenic than those from immunocompetent mice. In contrast, the equilibrium process was inferred largely from clinical observations, including reports of transplantation of undetected (occult) cancer from organ donor into immunosuppressed recipients. Herein we use a mouse model of primary chemical carcinogenesis and demonstrate that equilibrium occurs, is mechanistically distinguishable from elimination and escape, and that neoplastic cells in equilibrium are transformed but proliferate poorly in vivo. We also show that tumour cells in equilibrium are unedited but become edited when they spontaneously escape immune control and grow into clinically apparent tumours. These results reveal that, in addition to destroying tumour cells and sculpting tumour immunogenicity, the immune system of a naive mouse can also restrain cancer growth for extended time periods.  相似文献   
7.
Coupling superconducting qubits via a cavity bus   总被引:2,自引:0,他引:2  
Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine, and several examples of two-qubit interactions and gates have been demonstrated. These experiments show that two nearby qubits can be readily coupled with local interactions. Performing gate operations between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a 'quantum bus', which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity-induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.  相似文献   
8.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140?mm?Hg systolic blood pressure or ≥90?mm?Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.  相似文献   
9.
Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing, in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus (92)Pd. Gamma rays emitted following the (58)Ni((36)Ar,2n)(92)Pd fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution γ-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号