首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2009年   1篇
  2008年   2篇
排序方式: 共有3条查询结果,搜索用时 921 毫秒
1
1.
During the past few years, most of the new developed numerical weather prediction models adopt the strategy of multi-scale technique. Therefore, China Meteorological Administration has devoted to developing a new generation of global and regional multi-scale model since 2003. In order to validate the performance of the GRAPES (Global and Regional Assimilation and PrEdiction System) model both for its scientific design and program coding, a suite of idealized tests has been proposed and conducted, which includes the density flow test, three-dimensional mountain wave and the cross-polar flow test. The density flow experiment indicates that the dynamic core has the ability to simulate the fine scale nonlinear flow structures and its transient features. While the three-dimensional mountain wave test shows that the model can reproduce the horizontal and vertical propagation of internal gravity waves quite well. Cross-polar flow test demonstrates the rationality of both for the semi-Lagrangian departure point calculation and the discretization of the model near the poles. The real case forecasts reveal that the model has the ability to predict the large-scale weather regimes in summer such as the subtropical high, and to capture the major synoptic patterns in the mid and high latitudes.  相似文献   
2.
我国激光惯性约束聚变实验研究进展   总被引:6,自引:0,他引:6  
介绍国内自2000年以来的激光惯性聚变(inertial confrnementfusion,ICF)实验研究进展,主要内容为神光Ⅱ激光装置上的实验,也对刚建成不久的神光III原型装置上的实验作简要介绍。在神光Ⅱ激光装置上开展了多项的物理实验研究,进行了系列综合和分解实验,获得的主要实验技术指标为:黑腔峰值辐射温度超过二百万度;辐射驱动DT聚变中子产额达10^8和辐射驱动压缩DD燃料密度超过10倍液氘密度;辐射不透明的样品温度接近100eV。在神光Ⅱ装置上得到这些结果表明国内在惯性约束聚变研究方面取得了显著的进步。随着神光Ⅲ原型装置建造的完成,2007年在该装置上进行了首轮物理实验,开展了黑腔物理和辐射内爆物理实验,首轮实验的成功说明神光Ⅲ原型装置已具备实验能力。  相似文献   
3.
A new generation of numerical prediction system GRAPES (a short form of Global/Regional Assimilation and PrEdiction System) was set up in China Meteorological Administration (CMA). This paper fo- cuses on the scientific design and preliminary results of the numerical prediction model in GRAPES, including basic idea and strategy of the general scientific design, multi-scale dynamic core, physical package configuration, architecture and parallelization of the codes. A series of numerical experiments using the real data with horizontal resolutions from 10 to 280 km and idealized experiments with very high resolution up to 100 m are conducted, giving encouraging results supporting the multi-scale application of GRAPES. The results of operational implementation of GRAPES model in some NWP centers are also presented with stress at evaluations of the capability to predict the main features of precipitation in China. Finally the issues to be dealt with for further development are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号