首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
研究方法   2篇
综合类   2篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
Aberrant WNT pathway signaling is an early progression event in 90% of colorectal cancers. It occurs through mutations mainly of APC and less often of CTNNB1 (encoding beta-catenin) or AXIN2 (encoding axin-2, also known as conductin). These mutations allow ligand-independent WNT signaling that culminates in abnormal accumulation of free beta-catenin in the nucleus. We previously identified frequent promoter hypermethylation and gene silencing of the genes encoding secreted frizzled-related proteins (SFRPs) in colorectal cancer. SFRPs possess a domain similar to one in the WNT-receptor frizzled proteins and can inhibit WNT receptor binding to downregulate pathway signaling during development. Here we show that restoration of SFRP function in colorectal cancer cells attenuates WNT signaling even in the presence of downstream mutations. We also show that the epigenetic loss of SFRP function occurs early in colorectal cancer progression and may thus provide constitutive WNT signaling that is required to complement downstream mutations in the evolution of colorectal cancer.  相似文献   
2.
CpG methylation is maintained in human cancer cells lacking DNMT1   总被引:31,自引:0,他引:31  
Hypermethylation is associated with the silencing of tumour susceptibility genes in several forms of cancer; however, the mechanisms responsible for this aberrant methylation are poorly understood. The prototypic DNA methyltransferase, DNMT1, has been widely assumed to be responsible for most of the methylation of the human genome, including the abnormal methylation found in cancers. To test this hypothesis, we disrupted the DNMT1 gene through homologous recombination in human colorectal carcinoma cells. Here we show that cells lacking DNMT1 exhibited markedly decreased cellular DNA methyltransferase activity, but there was only a 20% decrease in overall genomic methylation. Although juxtacentromeric satellites became significantly demethylated, most of the loci that we analysed, including the tumour suppressor gene p16INK4a, remained fully methylated and silenced. These results indicate that DNMT1 has an unsuspected degree of regional specificity in human cells and that methylating activities other than DNMT1 can maintain the methylation of most of the genome.  相似文献   
3.
The role of the primary mammalian DNA methyltransferase, DNMT1, in maintaining CpG island methylation in human colon cancer cells has recently been questioned. This controversy has arisen from discrepancies between genetic knockout and RNA interference-mediated knockdown studies. Here, we re-examined the RNA interference-based approach and found that hypermethylation of single-copy genes is maintained in cells transiently and stably depleted of DNMT1.  相似文献   
4.
DNMT1 and DNMT3b cooperate to silence genes in human cancer cells   总被引:81,自引:0,他引:81  
Inactivation of tumour suppressor genes is central to the development of all common forms of human cancer. This inactivation often results from epigenetic silencing associated with hypermethylation rather than intragenic mutations. In human cells, the mechanisms underlying locus-specific or global methylation patterns remain unclear. The prototypic DNA methyltransferase, Dnmt1, accounts for most methylation in mouse cells, but human cancer cells lacking DNMT1 retain significant genomic methylation and associated gene silencing. We disrupted the human DNMT3b gene in a colorectal cancer cell line. This deletion reduced global DNA methylation by less than 3%. Surprisingly, however, genetic disruption of both DNMT1 and DNMT3b nearly eliminated methyltransferase activity, and reduced genomic DNA methylation by greater than 95%. These marked changes resulted in demethylation of repeated sequences, loss of insulin-like growth factor II (IGF2) imprinting, abrogation of silencing of the tumour suppressor gene p16INK4a, and growth suppression. Here we demonstrate that two enzymes cooperatively maintain DNA methylation and gene silencing in human cancer cells, and provide compelling evidence that such methylation is essential for optimal neoplastic proliferation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号