首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
现状及发展   1篇
研究方法   2篇
综合类   5篇
  2018年   1篇
  2011年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Active oxygen species (AOS) generated in response to stimuli and during development can function as signalling molecules in eukaryotes, leading to specific downstream responses. In plants these include such diverse processes as coping with stress (for example pathogen attack, wounding and oxygen deprivation), abscisic-acid-induced guard-cell closure, and cellular development (for example root hair growth). Despite the importance of signalling via AOS in eukaryotes, little is known about the protein components operating downstream of AOS that mediate any of these processes. Here we show that expression of an Arabidopsis thaliana gene (OXI1) encoding a serine/threonine kinase is induced in response to a wide range of H2O2-generating stimuli. OXI1 kinase activity is itself also induced by H2O2 in vivo. OXI1 is required for full activation of the mitogen-activated protein kinases (MAPKs) MPK3 and MPK6 after treatment with AOS or elicitor and is necessary for at least two very different AOS-mediated processes: basal resistance to Peronospora parasitica infection, and root hair growth. Thus, OXI1 is an essential part of the signal transduction pathway linking oxidative burst signals to diverse downstream responses.  相似文献   
2.
Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.  相似文献   
3.
HAR1 mediates systemic regulation of symbiotic organ development   总被引:35,自引:0,他引:35  
Symbiotic root nodules are beneficial to leguminous host plants; however, excessive nodulation damages the host because it interferes with the distribution of nutrients in the plant. To keep a steady balance, the nodulation programme is regulated systemically in leguminous hosts. Leguminous mutants that have lost this ability display a hypernodulating phenotype. Through the use of reciprocal and self-grafting studies using Lotus japonicus hypernodulating mutants, har1 (also known as sym78), we show that the shoot genotype is responsible for the negative regulation of nodule development. A map-based cloning strategy revealed that HAR1 encodes a protein with a relative molecular mass of 108,000, which contains 21 leucine-rich repeats, a single transmembrane domain and serine/threonine kinase domains. The har1 mutant phenotype was rescued by transfection of the HAR1 gene. In a comparison of Arabidopsis receptor-like kinases, HAR1 showed the highest level of similarity with CLAVATA1 (CLV1). CLV1 negatively regulates formation of the shoot and floral meristems through cell-cell communication involving the CLV3 peptide. Identification of hypernodulation genes thus indicates that genes in leguminous plants bearing a close resemblance to CLV1 regulate nodule development systemically, by means of organ-organ communication.  相似文献   
4.
The roots of most higher plants form arbuscular mycorrhiza, an ancient, phosphate-acquiring symbiosis with fungi, whereas only four related plant orders are able to engage in the evolutionary younger nitrogen-fixing root-nodule symbiosis with bacteria. Plant symbioses with bacteria and fungi require a set of common signal transduction components that redirect root cell development. Here we present two highly homologous genes from Lotus japonicus, CASTOR and POLLUX, that are indispensable for microbial admission into plant cells and act upstream of intracellular calcium spiking, one of the earliest plant responses to symbiotic stimulation. Surprisingly, both twin proteins are localized in the plastids of root cells, indicating a previously unrecognized role of this ancient endosymbiont in controlling intracellular symbioses that evolved more recently.  相似文献   
5.
Small, compact genomes of ultrasmall unicellular algae provide information on the basic and essential genes that support the lives of photosynthetic eukaryotes, including higher plants. Here we report the 16,520,305-base-pair sequence of the 20 chromosomes of the unicellular red alga Cyanidioschyzon merolae 10D as the first complete algal genome. We identified 5,331 genes in total, of which at least 86.3% were expressed. Unique characteristics of this genomic structure include: a lack of introns in all but 26 genes; only three copies of ribosomal DNA units that maintain the nucleolus; and two dynamin genes that are involved only in the division of mitochondria and plastids. The conserved mosaic origin of Calvin cycle enzymes in this red alga and in green plants supports the hypothesis of the existence of single primary plastid endosymbiosis. The lack of a myosin gene, in addition to the unexpressed actin gene, suggests a simpler system of cytokinesis. These results indicate that the C. merolae genome provides a model system with a simple gene composition for studying the origin, evolution and fundamental mechanisms of eukaryotic cells.  相似文献   
6.
The heart is regarded as an endocrine organ as well as a pump for circulation, since atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were discovered in cardiomyocytes to be secreted as hormones. Both ANP and BNP bind to their receptors expressed on remote organs, such as kidneys and blood vessels; therefore, the heart controls the circulation by pumping blood and by secreting endocrine peptides. Cardiomyocytes secrete other peptides besides natriuretic peptides. Although most of such cardiomyocyte-derived peptides act on the heart in autocrine/paracrine fashions, several peptides target remote organs. In this review, to overview current knowledge of endocrine properties of the heart, we focus on cardiomyocyte-derived peptides (cardiomyokines) that act on the remote organs as well as the heart. Cardiomyokines act on remote organs to regulate cardiovascular homeostasis, systemic metabolism, and inflammation. Therefore, through its endocrine function, the heart can maintain physiological conditions and prevent organ damage under pathological conditions.  相似文献   
7.
We report mapping of a quantitative trait locus (QTL) with a major effect on bovine stature to a ~780-kb interval using a Hidden Markov Model-based approach that simultaneously exploits linkage and linkage disequilibrium. We re-sequenced the interval in six sires with known QTL genotype and identified 13 clustered candidate quantitative trait nucleotides (QTNs) out of >9,572 discovered variants. We eliminated five candidate QTNs by studying the phenotypic effect of a recombinant haplotype identified in a breed diversity panel. We show that the QTL influences fetal expression of seven of the nine genes mapping to the ~780-kb interval. We further show that two of the eight candidate QTNs, mapping to the PLAG1-CHCHD7 intergenic region, influence bidirectional promoter strength and affect binding of nuclear factors. By performing expression QTL analyses, we identified a splice site variant in CHCHD7 and exploited this naturally occurring null allele to exclude CHCHD7 as single causative gene.  相似文献   
8.
Induced development of a new plant organ in response to rhizobia is the most prominent manifestation of legume root-nodule symbiosis with nitrogen-fixing bacteria. Here we show that the complex root-nodule organogenic programme can be genetically deregulated to trigger de novo nodule formation in the absence of rhizobia or exogenous rhizobial signals. In an ethylmethane sulphonate-induced snf1 (spontaneous nodule formation) mutant of Lotus japonicus, a single amino-acid replacement in a Ca2+/calmodulin-dependent protein kinase (CCaMK) is sufficient to turn fully differentiated root cortical cells into meristematic founder cells of root nodule primordia. These spontaneous nodules are genuine nodules with an ontogeny similar to that of rhizobial-induced root nodules, corroborating previous physiological studies. Using two receptor-deficient genetic backgrounds we provide evidence for a developmentally integrated spontaneous nodulation process that is independent of lipochitin-oligosaccharide signal perception and oscillations in Ca2+ second messenger levels. Our results reveal a key regulatory position of CCaMK upstream of all components required for cell-cycle activation, and a phenotypically divergent series of mutant alleles demonstrates positive and negative regulation of the process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号