首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
现状及发展   2篇
综合类   10篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  1992年   1篇
  1990年   3篇
排序方式: 共有12条查询结果,搜索用时 78 毫秒
1.
2.
3.
Okada Y  Higuchi H  Hirokawa N 《Nature》2003,424(6948):574-577
Conventional isoforms of the motor protein kinesin behave functionally not as 'single molecules' but as 'two molecules' paired. This dimeric structure poses a barrier to solving its mechanism. To overcome this problem, we used an unconventional kinesin KIF1A (refs 5, 6) as a model molecule. KIF1A moves processively as an independent monomer, and can also work synergistically as a functional dimer. Here we show, by measuring its movement with an optical trapping system, that a single ATP hydrolysis triggers a single stepping movement of a single KIF1A monomer. The step size is distributed stochastically around multiples of 8 nm with a gaussian-like envelope and a standard deviation of 15 nm. On average, the step is directional to the microtubule's plus-end against a load force of up to 0.15 pN. As the source for this directional movement, we show that KIF1A moves to the microtubule's plus-end by approximately 3 nm on average on binding to the microtubule, presumably by preferential binding to tubulin on the plus-end side. We propose a simple physical formulation to explain the movement of KIF1A.  相似文献   
4.
Summary We examined the changes in the intracerebral activities, at the time of postmortem autopsy, in patients with Alzheimer's disease. When compared with the control group, the activity of kallikrein-like enzyme was significantly decreased, while prolyl endopeptidase activity increased, in the patients group. Aprotinin inhibited 50% of the activity of the former enzyme at 2×10–7M. Taken together with the results of a multivariate study, the above findings may indicate that intracerebral kallikrein deficiency plays an important role in the pathogenesis of Alzheimer's disease.  相似文献   
5.
Tanaka Y  Okada Y  Hirokawa N 《Nature》2005,435(7039):172-177
The precise specification of left-right asymmetry is an essential process for patterning internal organs in vertebrates. In mouse embryonic development, the symmetry-breaking process in left-right determination is initiated by a leftward extraembryonic fluid flow on the surface of the ventral node. However, it is not known whether the signal transduction mechanism of this flow is chemical or mechanical. Here we show that fibroblast growth factor (FGF) signalling triggers secretion of membrane-sheathed objects 0.3-5 microm in diameter termed 'nodal vesicular parcels' (NVPs) that carry Sonic hedgehog and retinoic acid. These NVPs are transported leftward by the fluid flow and eventually fragment close to the left wall of the ventral node. The silencing effects of the FGF-receptor inhibitor SU5402 on NVP secretion and on a downstream rise in Ca2+ were sufficiently reversed by exogenous Sonic hedgehog peptide or retinoic acid, suggesting that FGF-triggered surface accumulation of cargo morphogens may be essential for launching NVPs. Thus, we propose that NVP flow is a new mode of extracellular transport that forms a left-right gradient of morphogens.  相似文献   
6.
研究了镰仓历史街区的号观识别.构成区域环境的城市结构以三维因子分析来进行量化分析,此3项因子为:三维的阴影图、航拍图和立体模型.景观识别与可视的区域景象和区域认知图相关.通过对典型的镰仓号观的分形维数分析,试图揭示居民对实体或环境变化的共同观察,同时考虑了居民对其观察的确认及其与城市结构的关系.  相似文献   
7.
Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns, and members of the pro-inflammatory interleukin-1 receptor (IL-1R) family, share homologies in their cytoplasmic domains called Toll/IL-1R/plant R gene homology (TIR) domains. Intracellular signalling mechanisms mediated by TIRs are similar, with MyD88 (refs 5-8) and TRAF6 (refs 9, 10) having critical roles. Signal transduction between MyD88 and TRAF6 is known to involve the serine-threonine kinase IL-1 receptor-associated kinase 1 (IRAK-1) and two homologous proteins, IRAK-2 (ref. 12) and IRAK-M. However, the physiological functions of the IRAK molecules remain unclear, and gene-targeting studies have shown that IRAK-1 is only partially required for IL-1R and TLR signalling. Here we show by gene-targeting that IRAK-4, an IRAK molecule closely related to the Drosophila Pelle protein, is indispensable for the responses of animals and cultured cells to IL-1 and ligands that stimulate various TLRs. IRAK-4-deficient animals are completely resistant to a lethal dose of lipopolysaccharide (LPS). In addition, animals lacking IRAK-4 are severely impaired in their responses to viral and bacterial challenges. Our results indicate that IRAK-4 has an essential role in innate immunity.  相似文献   
8.
S Okabe  N Hirokawa 《Nature》1990,343(6257):479-482
The cytoskeleton has an important role in the generation and maintenance of the structure of the axon. Microtubules, neurofilaments and actin, together with various kinds of associated proteins, form highly organized dynamic cytoskeletal structures. Because tubulin and actin molecules are essential cytoskeletal components and are transported down the axon, it is important to understand their dynamic behaviour within the axon. Although previous pulse-labelling studies have indicated that the axonal cytoskeleton is a static complex travelling down the axon, this view has been challenged by the results of several recent experiments. We have now addressed this question by analysing the recovery of fluorescence after photobleaching fluorescent analogues of tubulin and actin in the axons of cultured neurons. We did not observe movement or spreading of bleached zones along the axon, both in neurons injected with fluorescein-labelled tubulin and actin. All bleached zones recovered their fluorescence gradually, however, indicating that microtubules and actin filaments are not static polymers moving forward within the axon, but are dynamic structures that continue to assemble along the length of the axon.  相似文献   
9.
We examined the changes in the intracerebral activities, at the time of postmortem autopsy, in patients with Alzheimer's disease. When compared with the control group, the activity of kallikrein-like enzyme was significantly decreased, while prolyl endopeptidase activity increased, in the patients group. Aprotinin inhibited 50% of the activity of the former enzyme at 2 x 10(-7) M. Taken together with the results of a multivariate study, the above findings may indicate that intracerebral kallikrein deficiency plays an important role in the pathogenesis of Alzheimer's disease.  相似文献   
10.
Setou M  Seog DH  Tanaka Y  Kanai Y  Takei Y  Kawagishi M  Hirokawa N 《Nature》2002,417(6884):83-87
In cells, molecular motors operate in polarized sorting of molecules, although the steering mechanisms of motors remain elusive. In neurons, the kinesin motor conducts vesicular transport such as the transport of synaptic vesicle components to axons and of neurotransmitter receptors to dendrites, indicating that vesicles may have to drive the motor for the direction to be correct. Here we show that an AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptor subunit--GluR2-interacting protein (GRIP1)--can directly interact and steer kinesin heavy chains to dendrites as a motor for AMPA receptors. As would be expected if this complex is functional, both gene targeting and dominant negative experiments of heavy chains of mouse kinesin showed abnormal localization of GRIP1. Moreover, expression of the kinesin-binding domain of GRIP1 resulted in accumulation of the endogenous kinesin predominantly in the somatodendritic area. This pattern was different from that generated by the overexpression of the kinesin-binding scaffold protein JSAP1 (JNK/SAPK-associated protein-1, also known as Mapk8ip3), which occurred predominantly in the somatoaxon area. These results indicate that directly binding proteins can determine the traffic direction of a motor protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号