首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
A neural correlate of response bias in monkey caudate nucleus   总被引:10,自引:0,他引:10  
Lauwereyns J  Watanabe K  Coe B  Hikosaka O 《Nature》2002,418(6896):413-417
Primates are equipped with neural circuits in the prefrontal cortex, the parietal cortex and the basal ganglia that predict the availability of reward during the performance of behavioural tasks. It is not known, however, how reward value is incorporated in the control of action. Here we identify neurons in the monkey caudate nucleus that create a spatially selective response bias depending on the expected gain. In behavioural tasks, the monkey had to make a visually guided eye movement in every trial, but was rewarded for a correct response in only half of the trials. Reward availability was predictable on the basis of the spatial position of the visual target. We found that caudate neurons change their discharge rate systematically, even before the appearance of the visual target, and usually fire more when the contralateral position is associated with reward. Strong anticipatory activity of neurons with a contralateral preference is associated with decreased latency for eye movements in the contralateral direction. We conclude that this neuronal mechanism creates an advance bias that favours a spatial response when it is associated with a high reward value.  相似文献   
2.
The worldwide leaf economics spectrum   总被引:48,自引:0,他引:48  
Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.  相似文献   
3.
Matsumoto M  Hikosaka O 《Nature》2007,447(7148):1111-1115
Midbrain dopamine neurons are key components of the brain's reward system, which is thought to guide reward-seeking behaviours. Although recent studies have shown how dopamine neurons respond to rewards and sensory stimuli predicting reward, it is unclear which parts of the brain provide dopamine neurons with signals necessary for these actions. Here we show that the primate lateral habenula, part of the structure called the epithalamus, is a major candidate for a source of negative reward-related signals in dopamine neurons. We recorded the activity of habenula neurons and dopamine neurons while rhesus monkeys were performing a visually guided saccade task with positionally biased reward outcomes. Many habenula neurons were excited by a no-reward-predicting target and inhibited by a reward-predicting target. In contrast, dopamine neurons were excited and inhibited by reward-predicting and no-reward-predicting targets, respectively. Each time the rewarded and unrewarded positions were reversed, both habenula and dopamine neurons reversed their responses as the bias in saccade latency reversed. In unrewarded trials, the excitation of habenula neurons started earlier than the inhibition of dopamine neurons. Furthermore, weak electrical stimulation of the lateral habenula elicited strong inhibitions in dopamine neurons. These results suggest that the inhibitory input from the lateral habenula plays an important role in determining the reward-related activity of dopamine neurons.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号