首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   611篇
  免费   6篇
  国内免费   5篇
系统科学   6篇
教育与普及   3篇
理论与方法论   8篇
现状及发展   64篇
研究方法   101篇
综合类   410篇
自然研究   30篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   8篇
  2015年   3篇
  2014年   5篇
  2013年   17篇
  2012年   85篇
  2011年   110篇
  2010年   17篇
  2009年   7篇
  2008年   73篇
  2007年   55篇
  2006年   36篇
  2005年   44篇
  2004年   34篇
  2003年   49篇
  2002年   45篇
  1999年   6篇
  1998年   4篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有622条查询结果,搜索用时 31 毫秒
1.
We identified three distinct mutations and six mutant alleles in GDAP1 in three families with axonal Charcot-Marie-Tooth (CMT) neuropathy and vocal cord paresis, which were previously linked to the CMT4A locus on chromosome 8q21.1. These results establish the molecular etiology of CMT4A (MIM 214400) and suggest that it may be associated with both axonal and demyelinating phenotypes.  相似文献   
2.
TextileandUncontrolledFires  Textilesarethethirdbasicrequirementforhumanlifeafterfoodandshelter.Textilesareusedforthermalprotectionagainsthostileweatherandtocovernakedness.Textilesalsoprovidecom fortinlifeintheformoffurnishings :upholstery ,carpets ,etc .…  相似文献   
3.
Structure,biosynthesis and functions of glycoprotein glycans   总被引:14,自引:0,他引:14  
Since the pioneering work on structure and function of heteroglycans compiled in the classical books edited by A. Gottschalk in 19721, there have been several promising developments in glycoconjugate research, as reviewed in this article.In Part 1, contributed by A. Kobata, current knowledge on heteroglycan structures is presented and representative examples taken from higher organisms are given. Part 2, written by J. F. G. Vliegenthart and J. P. Kamerling, covers the most important achievements in methodology: procedures to obtain pure glycans and to analyze their structures. Part 3, contributed by J. Paulson, is devoted to biosynthesis of glycans now describable as pathways since several of the glycosyltransferases have been isolated and analyzed for specificity. In Part 4, contributed by E. Buddecke, current knowledge on functional roles of glycans is presented. It will become apparent that the prerequisite for valid work either in biosynthetic or functional context depends on solid structural information. This is particularly true whenever glycosyltransferase reaction products are being analyzed, or glycans involved in biological functions are investigated. Although in past years, a great deal of important knowledge has been gathered by use of crude glycosidase or glycosyltransferase activities (a notable example is found in reference 2), one may now postulate that glycans implicated in biological reactions should be thoroughly analyzed.This review may familiarize newcomers with the field of glycoconjugate research with special emphasis on glycoprotein glycans. Glycolipids are not included in this article as they have recently been reviewed by S. I. Hakomori3. The reader is also referred to several excellent monographs4,5 and the Proceedings of the Glycoconjugate Symposia held biannually6–8.  相似文献   
4.
5.
6.
From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding 'higher' Nasutitermes species (which do not contain cellulose-fermenting protozoa) to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H2 metabolism, CO2-reductive acetogenesis and N2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-microl environment can be.  相似文献   
7.
With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2). We used 'long-range haplotype' methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population:LARGE and DMD, both related to infection by the Lassa virus, in West Africa;SLC24A5 and SLC45A2, both involved in skin pigmentation, in Europe; and EDAR and EDA2R, both involved in development of hair follicles, in Asia.  相似文献   
8.
9.
10.
A prominent feature of late-onset neurodegenerative diseases is accumulation of misfolded protein in vulnerable neurons. When levels of misfolded protein overwhelm degradative pathways, the result is cellular toxicity and neurodegeneration. Cellular mechanisms for degrading misfolded protein include the ubiquitin-proteasome system (UPS), the main non-lysosomal degradative pathway for ubiquitinated proteins, and autophagy, a lysosome-mediated degradative pathway. The UPS and autophagy have long been viewed as complementary degradation systems with no point of intersection. This view has been challenged by two observations suggesting an apparent interaction: impairment of the UPS induces autophagy in vitro, and conditional knockout of autophagy in the mouse brain leads to neurodegeneration with ubiquitin-positive pathology. It is not known whether autophagy is strictly a parallel degradation system, or whether it is a compensatory degradation system when the UPS is impaired; furthermore, if there is a compensatory interaction between these systems, the molecular link is not known. Here we show that autophagy acts as a compensatory degradation system when the UPS is impaired in Drosophila melanogaster, and that histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase that interacts with polyubiquitinated proteins, is an essential mechanistic link in this compensatory interaction. We found that compensatory autophagy was induced in response to mutations affecting the proteasome and in response to UPS impairment in a fly model of the neurodegenerative disease spinobulbar muscular atrophy. Autophagy compensated for impaired UPS function in an HDAC6-dependent manner. Furthermore, expression of HDAC6 was sufficient to rescue degeneration associated with UPS dysfunction in vivo in an autophagy-dependent manner. This study suggests that impairment of autophagy (for example, associated with ageing or genetic variation) might predispose to neurodegeneration. Morover, these findings suggest that it may be possible to intervene in neurodegeneration by augmenting HDAC6 to enhance autophagy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号