首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
系统科学   1篇
理论与方法论   2篇
现状及发展   9篇
研究方法   2篇
综合类   19篇
自然研究   1篇
  2020年   1篇
  2016年   5篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1979年   2篇
  1959年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
Cancer predisposition in hereditary non-polyposis colon cancer (HNPCC) is caused by defects in DNA mismatch repair (MMR). Mismatch recognition is attributed to two heterodimeric protein complexes: MutSalpha (refs 2, 3, 4, 5), a dimer of MutS homologues MSH2 and MSH6; and MutSbeta (refs 2,7), a dimer of MSH2 and MSH3. These complexes have specific and redundant mismatch recognition capacity. Whereas MSH2 deficiency ablates the activity of both dimers, causing strong cancer predisposition in mice and men, loss of MSH3 or MSH6 (also known as GTBP) function causes a partial MMR defect. This may explain the rarity of MSH6 and absence of MSH3 germline mutations in HNPCC families. To test this, we have inactivated the mouse genes Msh3 (formerly Rep3 ) and Msh6 (formerly Gtmbp). Msh6-deficient mice were prone to cancer; most animals developed lymphomas or epithelial tumours originating from the skin and uterus but only rarely from the intestine. Msh3 deficiency did not cause cancer predisposition, but in an Msh6 -deficient background, loss of Msh3 accelerated intestinal tumorigenesis. Lymphomagenesis was not affected. Furthermore, mismatch-directed anti-recombination and sensitivity to methylating agents required Msh2 and Msh6, but not Msh3. Thus, loss of MMR functions specific to Msh2/Msh6 is sufficient for lymphoma development in mice, whereas predisposition to intestinal cancer requires loss of function of both Msh2/Msh6 and Msh2/Msh3.  相似文献   
2.
Progress in the fabrication of nanometre-scale electronic devices is opening new opportunities to uncover deeper aspects of the Kondo effect--a characteristic phenomenon in the physics of strongly correlated electrons. Artificial single-impurity Kondo systems have been realized in various nanostructures, including semiconductor quantum dots, carbon nanotubes and individual molecules. The Kondo effect is usually regarded as a spin-related phenomenon, namely the coherent exchange of the spin between a localized state and a Fermi sea of delocalized electrons. In principle, however, the role of the spin could be replaced by other degrees of freedom, such as an orbital quantum number. Here we show that the unique electronic structure of carbon nanotubes enables the observation of a purely orbital Kondo effect. We use a magnetic field to tune spin-polarized states into orbital degeneracy and conclude that the orbital quantum number is conserved during tunnelling. When orbital and spin degeneracies are present simultaneously, we observe a strongly enhanced Kondo effect, with a multiple splitting of the Kondo resonance at finite field and predicted to obey a so-called SU4 symmetry.  相似文献   
3.
4.
Dimerization is a biological regulatory mechanism employed by both soluble and membrane proteins. However, there are few structural data on the factors that govern dimerization of membrane proteins. Outer membrane phospholipase A (OMPLA) is an integral membrane enzyme which participates in secretion of colicins in Escherichia coli. In Campilobacter and Helicobacter pylori strains, OMPLA is implied in virulence. Its activity is regulated by reversible dimerization. Here we report X-ray structures of monomeric and dimeric OMPLA from E. coli. Dimer interactions occur almost exclusively in the apolar membrane-embedded parts, with two hydrogen bonds within the hydrophobic membrane area being key interactions. Dimerization results in functional oxyanion holes and substrate-binding pockets, which are absent in monomeric OMPLA. These results provide a detailed view of activation by dimerization of a membrane protein.  相似文献   
5.
6.
In photosynthesis, the harvesting of solar energy and its subsequent conversion into a stable charge separation are dependent upon an interconnected macromolecular network of membrane-associated chlorophyll-protein complexes. Although the detailed structure of each complex has been determined, the size and organization of this network are unknown. Here we show the use of atomic force microscopy to directly reveal a native bacterial photosynthetic membrane. This first view of any multi-component membrane shows the relative positions and associations of the photosynthetic complexes and reveals crucial new features of the organization of the network: we found that the membrane is divided into specialized domains each with a different network organization and in which one type of complex predominates. Two types of organization were found for the peripheral light-harvesting LH2 complex. In the first, groups of 10-20 molecules of LH2 form light-capture domains that interconnect linear arrays of dimers of core reaction centre (RC)-light-harvesting 1 (RC-LH1-PufX) complexes; in the second they were found outside these arrays in larger clusters. The LH1 complex is ideally positioned to function as an energy collection hub, temporarily storing it before transfer to the RC where photochemistry occurs: the elegant economy of the photosynthetic membrane is demonstrated by the close packing of these linear arrays, which are often only separated by narrow 'energy conduits' of LH2 just two or three complexes wide.  相似文献   
7.
The human Rad50/Mre11/Nbs1 complex (hR/M/N) functions as an essential guardian of genome integrity by directing the proper processing of DNA ends, including DNA breaks. This biological function results from its ability to tether broken DNA molecules. hR/M/N's dynamic molecular architecture consists of a globular DNA-binding domain from which two 50-nm-long coiled coils protrude. The coiled coils are flexible and their apices can self-associate. The flexibility of the coiled coils allows their apices to adopt an orientation favourable for interaction. However, this also allows interaction between the tips of two coiled coils within the same complex, which competes with and frustrates the intercomplex interaction required for DNA tethering. Here we show that the dynamic architecture of hR/M/N is markedly affected by DNA binding. DNA binding by the hR/M/N globular domain leads to parallel orientation of the coiled coils; this prevents intracomplex interactions and favours intercomplex associations needed for DNA tethering. The hR/M/N complex thus is an example of a biological nanomachine in which binding to its ligand, in this case DNA, affects the functional conformation of a domain located 50 nm distant.  相似文献   
8.
Direct measurement of electrical transport through DNA molecules   总被引:25,自引:0,他引:25  
Porath D  Bezryadin A  de Vries S  Dekker C 《Nature》2000,403(6770):635-638
Attempts to infer DNA electron transfer from fluorescence quenching measurements on DNA strands doped with donor and acceptor molecules have spurred intense debate over the question of whether or not this important biomolecule is able to conduct electrical charges. More recently, first electrical transport measurements on micrometre-long DNA 'ropes', and also on large numbers of DNA molecules in films, have indicated that DNA behaves as a good linear conductor. Here we present measurements of electrical transport through individual 10.4-nm-long, double-stranded poly(G)-poly(C) DNA molecules connected to two metal nanoelectrodes, that indicate, by contrast, large-bandgap semiconducting behaviour. We obtain nonlinear current-voltage curves that exhibit a voltage gap at low applied bias. This is observed in air as well as in vacuum down to cryogenic temperatures. The voltage dependence of the differential conductance exhibits a peak structure, which is suggestive of the charge carrier transport being mediated by the molecular energy bands of DNA.  相似文献   
9.
10.
The drive towards the development of molecular electronics is placing increasing demands on the level of control that must be exerted on the electronic structure of materials. Proposed device architectures ultimately rely on tuning the interactions between individual electronic states, which amounts to controlling the detailed spatial structure of the electronic wavefunctions in the constituent molecules. Few experimental tools are available to probe this spatial structure directly, and the shapes of molecular wavefunctions are usually only known from theoretical investigations. Here we present scanning tunnelling spectroscopy measurements of the two-dimensional structure of individual wavefunctions in metallic single-walled carbon nanotubes; these measurements reveal spatial patterns that can be directly understood from the electronic structure of a single graphite sheet, and which represent an elegant illustration of Bloch's theorem at the level of individual wavefunctions. We also observe energy-dependent interference patterns in the wavefunctions and exploit these to directly measure the linear electronic dispersion relation of the metallic single-walled carbon nanotube.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号