首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
现状及发展   8篇
研究方法   2篇
综合类   6篇
  2014年   1篇
  2011年   1篇
  2007年   4篇
  2005年   1篇
  2004年   2篇
  1981年   1篇
  1979年   2篇
  1974年   1篇
  1972年   2篇
  1963年   1篇
排序方式: 共有16条查询结果,搜索用时 46 毫秒
1.
Summary Transfer of light-grown maize seedlings to dark causes a loss in the contents of chlorophyll, protein and RNA of leaves, and a decline in DCPIP photoreduction by isolated chloroplasts. The loss in DCPIP-Hill reaction is attributed to the dark stress-induced damage of O2 evolving system of thylakoid membranes.Acknowledgment. We thank Prof. M.C. Dash, School of Life Sciences, for encouragement and providing the facilities.  相似文献   
2.
N K Choudhury  U C Biswal 《Experientia》1979,35(8):1036-1037
Transfer of light-grown maize seedlings to dark causes a loss in the the contents of chlorophyll, protein and RNA of leaves, and a decline in DCPIP photoreduction by isolated chloroplasts. The loss in DCPIP-Hill reaction is attributed to the dark stress-induced damage of O2 evolving system of thylakoid membranes.  相似文献   
3.
Room-temperature ferroelectricity in strained SrTiO3   总被引:1,自引:0,他引:1  
Systems with a ferroelectric to paraelectric transition in the vicinity of room temperature are useful for devices. Adjusting the ferroelectric transition temperature (T(c)) is traditionally accomplished by chemical substitution-as in Ba(x)Sr(1-x)TiO(3), the material widely investigated for microwave devices in which the dielectric constant (epsilon(r)) at GHz frequencies is tuned by applying a quasi-static electric field. Heterogeneity associated with chemical substitution in such films, however, can broaden this phase transition by hundreds of degrees, which is detrimental to tunability and microwave device performance. An alternative way to adjust T(c) in ferroelectric films is strain. Here we show that epitaxial strain from a newly developed substrate can be harnessed to increase T(c) by hundreds of degrees and produce room-temperature ferroelectricity in strontium titanate, a material that is not normally ferroelectric at any temperature. This strain-induced enhancement in T(c) is the largest ever reported. Spatially resolved images of the local polarization state reveal a uniformity that far exceeds films tailored by chemical substitution. The high epsilon(r) at room temperature in these films (nearly 7,000 at 10 GHz) and its sharp dependence on electric field are promising for device applications.  相似文献   
4.
Shallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa. The deeper parts of the Southern Ocean exhibit some unique environmental features, including a very deep continental shelf and a weakly stratified water column, and are the source for much of the deep water in the world ocean. These features suggest that deep-sea faunas around the Antarctic may be related both to adjacent shelf communities and to those in other oceans. Unlike shallow-water Antarctic benthic communities, however, little is known about life in this vast deep-sea region. Here, we report new data from recent sampling expeditions in the deep Weddell Sea and adjacent areas (748-6,348 m water depth) that reveal high levels of new biodiversity; for example, 674 isopods species, of which 585 were new to science. Bathymetric and biogeographic trends varied between taxa. In groups such as the isopods and polychaetes, slope assemblages included species that have invaded from the shelf. In other taxa, the shelf and slope assemblages were more distinct. Abyssal faunas tended to have stronger links to other oceans, particularly the Atlantic, but mainly in taxa with good dispersal capabilities, such as the Foraminifera. The isopods, ostracods and nematodes, which are poor dispersers, include many species currently known only from the Southern Ocean. Our findings challenge suggestions that deep-sea diversity is depressed in the Southern Ocean and provide a basis for exploring the evolutionary significance of the varied biogeographic patterns observed in this remote environment.  相似文献   
5.
Zusammenfassung Es werden Zellveränderungen des Hypothalamus bei traumatischen Hautschädigungen untersucht und Vergrösserungen neurosekretorischer Zellen, Protoplasmaveränderungen sowie Veränderungen der Sekretionsprozesse festgestellt.  相似文献   
6.
7.
Highly rearranged and mutated cancer genomes present major challenges in the identification of pathogenetic events driving the neoplastic transformation process. Here we engineered lymphoma-prone mice with chromosomal instability to assess the usefulness of mouse models in cancer gene discovery and the extent of cross-species overlap in cancer-associated copy number aberrations. Along with targeted re-sequencing, our comparative oncogenomic studies identified FBXW7 and PTEN to be commonly deleted both in murine lymphomas and in human T-cell acute lymphoblastic leukaemia/lymphoma (T-ALL). The murine cancers acquire widespread recurrent amplifications and deletions targeting loci syntenic to those not only in human T-ALL but also in diverse human haematopoietic, mesenchymal and epithelial tumours. These results indicate that murine and human tumours experience common biological processes driven by orthologous genetic events in their malignant evolution. The highly concordant nature of genomic events encourages the use of genomically unstable murine cancer models in the discovery of biological driver events in the human oncogenome.  相似文献   
8.
Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be 'passengers' that do not contribute to oncogenesis. However, there was evidence for 'driver' mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.  相似文献   
9.
Reversible DNA methylation is a fundamental epigenetic manipulator of the genomic information in eukaryotes. DNA demethylation plays a very significant role during embryonic development and stands out for its contribution in molecular reconfiguration during cellular differentiation for determining stem cell fate. DNA demethylation arbitrated extensive make-over of the genome via reprogramming in the early embryo results in stem cell plasticity followed by commitment to the principal cell lineages. This article attempts to highlight the sequential phases and hierarchical mode of DNA demethylation events during enactment of the molecular strategy for developmental transition. A comprehensive knowledge regarding the pattern of DNA demethylation during embryogenesis and organogenesis and study of the related lacunae will offer exciting avenues for future biomedical research and stem cell-based regenerative therapy.  相似文献   
10.
Telomere shortening limits the proliferative lifespan of human cells by activation of DNA damage pathways, including upregulation of the cell cycle inhibitor p21 (encoded by Cdkn1a, also known as Cip1 and Waf1)) (refs. 1-5). Telomere shortening in response to mutation of the gene encoding telomerase is associated with impaired organ maintenance and shortened lifespan in humans and in mice. The in vivo function of p21 in the context of telomere dysfunction is unknown. Here we show that deletion of p21 prolongs the lifespan of telomerase-deficient mice with dysfunctional telomeres. p21 deletion improved hematolymphopoiesis and the maintenance of intestinal epithelia without rescuing telomere function. Moreover, deletion of p21 rescued proliferation of intestinal progenitor cells and improved the repopulation capacity and self-renewal of hematopoietic stem cells from mice with dysfunctional telomeres. In these mice, apoptotic responses remained intact, and p21 deletion did not accelerate chromosomal instability or cancer formation. This study provides experimental evidence that telomere dysfunction induces p21-dependent checkpoints in vivo that can limit longevity at the organismal level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号