首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
综合类   7篇
  2011年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Geodetic evidence for a low slip rate in the Altyn Tagh fault system   总被引:8,自引:0,他引:8  
Bendick R  Bilham R  Freymueller J  Larson K  Yin G 《Nature》2000,404(6773):69-72
The collision between India and Asia has been simulated with a variety of computational models that describe or predict the motions of the main faults of east Asia. Geological slip-rate estimates of 20-30 mm yr(-1) suggest that the largest of these faults, the 2,000-km-long Altyn Tagh fault system on the northern edge of the Tibetan plateau, absorbs as much of the Indo-Asian convergence signal as do the Himalayas--partly by oblique slip and partly by contraction and mountain growth. However, the predictions of dynamic models for Asian deformation and the lower bounds of some geological slip-rates estimates (3-9 mm yr(-1); refs 7, 8) suggest that the Altyn Tagh system is less active. Here, we report geodetic data from 89-91 degrees E that indicate left-lateral shear of 9 +/- 5 mm yr(-1) and contraction of 3 +/- 1 mm yr(-1) across the Altyn Tagh system. This result--combined with our finding that, at 90 degrees E, Tibet contracts north-south at 9 +/- 1 mm yr(-1)--supports the predictions of dynamic models of Asian deformation.  相似文献   
2.
Imaging the Indian subcontinent beneath the Himalaya   总被引:7,自引:0,他引:7  
The rocks of the Indian subcontinent are last seen south of the Ganges before they plunge beneath the Himalaya and the Tibetan plateau. They are next glimpsed in seismic reflection profiles deep beneath southern Tibet, yet the surface seen there has been modified by processes within the Himalaya that have consumed parts of the upper Indian crust and converted them into Himalayan rocks. The geometry of the partly dismantled Indian plate as it passes through the Himalayan process zone has hitherto eluded imaging. Here we report seismic images both of the decollement at the base of the Himalaya and of the Moho (the boundary between crust and mantle) at the base of the Indian crust. A significant finding is that strong seismic anisotropy develops above the decollement in response to shear processes that are taken up as slip in great earthquakes at shallower depths. North of the Himalaya, the lower Indian crust is characterized by a high-velocity region consistent with the formation of eclogite, a high-density material whose presence affects the dynamics of the Tibetan plateau.  相似文献   
3.
Great Himalayan earthquakes and the Tibetan plateau   总被引:7,自引:0,他引:7  
Feldl N  Bilham R 《Nature》2006,444(7116):165-170
It has been assumed that Himalayan earthquakes are driven by the release of compressional strain accumulating close to the Greater Himalaya. However, elastic models of the Indo-Asian collision using recently imaged subsurface interface geometries suggest that a substantial fraction of the southernmost 500 kilometres of the Tibetan plateau participates in driving great ruptures. We show here that this Tibetan reservoir of elastic strain energy is drained in proportion to Himalayan rupture length, and that the consequent growth of slip and magnitude with rupture area, when compared to data from recent earthquakes, can be used to infer a approximately 500-year renewal time for these events. The elastic models also illuminate two puzzling features of plate boundary seismicity: how great earthquakes can re-rupture regions that have already ruptured in recent smaller earthquakes and how mega-earthquakes with greater than 20 metres slip may occur at millennia-long intervals, driven by residual strain following many centuries of smaller earthquakes.  相似文献   
4.
The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.  相似文献   
5.
Plateau 'pop-up' in the great 1897 Assam earthquake   总被引:5,自引:0,他引:5  
Bilham R  England P 《Nature》2001,410(6830):806-809
The great Assam earthquake of 12 June 1897 reduced to rubble all masonry buildings within a region of northeastern India roughly the size of England, and was felt over an area exceeding that of the great 1755 Lisbon earthquake. Hitherto it was believed that rupture occurred on a north-dipping Himalayan thrust fault propagating south of Bhutan. But here we show that the northern edge of the Shillong plateau rose violently by at least 11 m during the Assam earthquake, and that this was due to the rupture of a buried reverse fault approximately 110 km in length and dipping steeply away from the Himalaya. The stress drop implied by the rupture geometry and the prodigious fault slip of 18 +/- 7 m explains epicentral accelerations observed to exceed 1g vertically and surface velocities exceeding 3 m s-1 (ref. 1). This quantitative observation of active deformation of a 'pop-up' structure confirms that faults bounding such structures can penetrate the whole crust. Plateau uplift in the past 2-5 million years has caused the Indian plate to contract locally by 4 +/- 2 mm yr-1, reducing seismic risk in Bhutan but increasing the risk in northern Bangladesh.  相似文献   
6.
Corruption kills     
Ambraseys N  Bilham R 《Nature》2011,469(7329):153-155
  相似文献   
7.
Mueller K  Hough SE  Bilham R 《Nature》2004,429(6989):284-288
Although dynamic stress changes associated with the passage of seismic waves are thought to trigger earthquakes at great distances, more than 60 per cent of all aftershocks appear to be triggered by static stress changes within two rupture lengths of a mainshock. The observed distribution of aftershocks may thus be used to infer details of mainshock rupture geometry. Aftershocks following large mid-continental earthquakes, where background stressing rates are low, are known to persist for centuries, and models based on rate-and-state friction laws provide theoretical support for this inference. Most past studies of the New Madrid earthquake sequence have indeed assumed ongoing microseismicity to be a continuing aftershock sequence. Here we use instrumentally recorded aftershock locations and models of elastic stress change to develop a kinematically consistent rupture scenario for three of the four largest earthquakes of the 1811-1812 New Madrid sequence. Our results suggest that these three events occurred on two contiguous faults, producing lobes of increased stress near fault intersections and end points, in areas where present-day microearthquakes have been hitherto interpreted as evidence of primary mainshock rupture. We infer that the remaining New Madrid mainshock may have occurred more than 200 km north of this region in the Wabash Valley of southern Indiana and Illinois--an area that contains abundant modern microseismicity, and where substantial liquefaction was documented by historic accounts. Our results suggest that future large mid-plate earthquake sequences may extend over a much broader region than previously suspected.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号