首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
研究方法   4篇
综合类   13篇
  2011年   4篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Botella H  Blom H  Dorka M  Ahlberg PE  Janvier P 《Nature》2007,448(7153):583-586
Extant jawed vertebrates, or gnathostomes, fall into two major monophyletic groups, namely chondrichthyans (cartilaginous fishes) and osteichthyans (bony fishes and tetrapods). Fossil representatives of the osteichthyan crown group are known from the latest Silurian period, 418 million years (Myr) ago, to the present. By contrast, stem chondrichthyans and stem osteichthyans are still largely unknown. Two extinct Palaeozoic groups, the acanthodians and placoderms, may fall into these stem groups or the common stem group of gnathostomes, but their relationships and monophyletic status are both debated. Here we report unambiguous evidence for osteichthyan characters in jaw bones referred to the late Silurian (423-416-Myr-old) fishes Andreolepis hedei and Lophosteus superbus, long known from isolated bone fragments, scales and teeth, and whose affinities to, or within, osteichthyans have been debated. The bones are a characteristic osteichthyan maxillary and dentary, but the organization of the tooth-like denticles they bear differs from the large, conical teeth of crown-group osteichthyans, indicating that they can be assigned to the stem group. Andreolepis and Lophosteus are thus not only the oldest but also the most phylogenetically basal securely identified osteichthyans known so far.  相似文献   
2.
From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding 'higher' Nasutitermes species (which do not contain cellulose-fermenting protozoa) to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H2 metabolism, CO2-reductive acetogenesis and N2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-microl environment can be.  相似文献   
3.
Biodiversity and ecosystem multifunctionality   总被引:8,自引:0,他引:8  
Hector A  Bagchi R 《Nature》2007,448(7150):188-190
Biodiversity loss can affect ecosystem functions and services. Individual ecosystem functions generally show a positive asymptotic relationship with increasing biodiversity, suggesting that some species are redundant. However, ecosystems are managed and conserved for multiple functions, which may require greater biodiversity. Here we present an analysis of published data from grassland biodiversity experiments, and show that ecosystem multifunctionality does require greater numbers of species. We analysed each ecosystem function alone to identify species with desirable effects. We then calculated the number of species with positive effects for all possible combinations of functions. Our results show appreciable differences in the sets of species influencing different ecosystem functions, with average proportional overlap of about 0.2 to 0.5. Consequently, as more ecosystem processes were included in our analysis, more species were found to affect overall functioning. Specifically, for all of the analysed experiments, there was a positive saturating relationship between the number of ecosystem processes considered and the number of species influencing overall functioning. We conclude that because different species often influence different functions, studies focusing on individual processes in isolation will underestimate levels of biodiversity required to maintain multifunctional ecosystems.  相似文献   
4.
Aldaz H  Rice LM  Stearns T  Agard DA 《Nature》2005,435(7041):523-527
Microtubules are hollow polymers of alphabeta-tubulin that show GTP-dependent assembly dynamics and comprise a critical part of the eukaryotic cytoskeleton. Initiation of new microtubules in vivo requires gamma-tubulin, organized as an oligomer within the 2.2-MDa gamma-tubulin ring complex (gamma-TuRC) of higher eukaryotes. Structural insight is lacking regarding gamma-tubulin, its oligomerization and how it promotes microtubule assembly. Here we report the 2.7-A crystal structure of human gamma-tubulin bound to GTP-gammaS (a non-hydrolysable GTP analogue). We observe a 'curved' conformation for gamma-tubulin-GTPgammaS, similar to that seen for GDP-bound, unpolymerized alphabeta-tubulin. Tubulins are thought to represent a distinct class of GTP-binding proteins, and conformational switching in gamma-tubulin might differ from the nucleotide-dependent switching of signalling GTPases. A crystal packing interaction replicates the lateral contacts between alpha- and beta-tubulins in the microtubule, and this association probably forms the basis for gamma-tubulin oligomerization within the gamma-TuRC. Laterally associated gamma-tubulins in the gamma-TuRC might promote microtubule nucleation by providing a template that enhances the intrinsically weak lateral interaction between alphabeta-tubulin heterodimers. Because they are dimeric, alphabeta-tubulins cannot form microtubule-like lateral associations in the curved conformation. The lateral array of gamma-tubulins we observe in the crystal reveals a unique functional property of a monomeric tubulin.  相似文献   
5.
Nipah virus (NiV) is an emergent paramyxovirus that causes fatal encephalitis in up to 70 percent of infected patients, and there is evidence of human-to-human transmission. Endothelial syncytia, comprised of multinucleated giant-endothelial cells, are frequently found in NiV infections, and are mediated by the fusion (F) and attachment (G) envelope glycoproteins. Identification of the receptor for this virus will shed light on the pathobiology of NiV infection, and spur the rational development of effective therapeutics. Here we report that ephrinB2, the membrane-bound ligand for the EphB class of receptor tyrosine kinases (RTKs), specifically binds to the attachment (G) glycoprotein of NiV. Soluble Fc-fusion proteins of ephrinB2, but not ephrinB1, effectively block NiV fusion and entry into permissive cell types. Moreover, transfection of ephrinB2 into non-permissive cells renders them permissive for NiV fusion and entry. EphrinB2 is expressed on endothelial cells and neurons, which is consistent with the known cellular tropism for NiV. Significantly, we find that NiV-envelope-mediated infection of microvascular endothelial cells and primary cortical rat neurons is inhibited by soluble ephrinB2, but not by the related ephrinB1 protein. Cumulatively, our data show that ephrinB2 is a functional receptor for NiV.  相似文献   
6.
Continuous turnover of epithelia is ensured by the extensive self-renewal capacity of tissue-specific stem cells. Similarly, epithelial tumour maintenance relies on cancer stem cells (CSCs), which co-opt stem cell properties. For most tumours, the cellular origin of these CSCs and regulatory pathways essential for sustaining stemness have not been identified. In murine skin, follicular morphogenesis is driven by bulge stem cells that specifically express CD34. Here we identify a population of cells in early epidermal tumours characterized by phenotypic and functional similarities to normal bulge skin stem cells. This population contains CSCs, which are the only cells with tumour initiation properties. Transplants derived from these CSCs preserve the hierarchical organization of the primary tumour. We describe beta-catenin signalling as being essential in sustaining the CSC phenotype. Ablation of the beta-catenin gene results in the loss of CSCs and complete tumour regression. In addition, we provide evidence for the involvement of increased beta-catenin signalling in malignant human squamous cell carcinomas. Because Wnt/beta-catenin signalling is not essential for normal epidermal homeostasis, such a mechanistic difference may thus be targeted to eliminate CSCs and consequently eradicate squamous cell carcinomas.  相似文献   
7.
Erythroid cells undergo enucleation and the removal of organelles during terminal differentiation. Although autophagy has been suggested to mediate the elimination of organelles for erythroid maturation, the molecular mechanisms underlying this process remain undefined. Here we report a role for a Bcl-2 family member, Nix (also called Bnip3L), in the regulation of erythroid maturation through mitochondrial autophagy. Nix(-/-) mice developed anaemia with reduced mature erythrocytes and compensatory expansion of erythroid precursors. Erythrocytes in the peripheral blood of Nix(-/-) mice exhibited mitochondrial retention and reduced lifespan in vivo. Although the clearance of ribosomes proceeded normally in the absence of Nix, the entry of mitochondria into autophagosomes for clearance was defective. Deficiency in Nix inhibited the loss of mitochondrial membrane potential (DeltaPsi(m)), and treatment with uncoupling chemicals or a BH3 mimetic induced the loss of DeltaPsi(m) and restored the sequestration of mitochondria into autophagosomes in Nix(-/-) erythroid cells. These results suggest that Nix-dependent loss of DeltaPsi(m) is important for targeting the mitochondria into autophagosomes for clearance during erythroid maturation, and interference with this function impairs erythroid maturation and results in anaemia. Our study may also provide insights into molecular mechanisms underlying mitochondrial quality control involving mitochondrial autophagy.  相似文献   
8.
Circuits based on organic semiconductors are being actively explored for flexible, transparent and low-cost electronic applications. But to realize such applications, the charge carrier mobilities of solution-processed organic semiconductors must be improved. For inorganic semiconductors, a general method of increasing charge carrier mobility is to introduce strain within the crystal lattice. Here we describe a solution-processing technique for organic semiconductors in which lattice strain is used to increase charge carrier mobilities by introducing greater electron orbital overlap between the component molecules. For organic semiconductors, the spacing between cofacially stacked, conjugated backbones (the π-π stacking distance) greatly influences electron orbital overlap and therefore mobility. Using our method to incrementally introduce lattice strain, we alter the π-π stacking distance of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) from 3.33?? to 3.08??. We believe that 3.08?? is the shortest π-π stacking distance that has been achieved in an organic semiconductor crystal lattice (although a π-π distance of 3.04?? has been achieved through intramolecular bonding). The positive charge carrier (hole) mobility in TIPS-pentacene transistors increased from 0.8?cm(2)?V(-1)?s(-1) for unstrained films to a high mobility of 4.6?cm(2)?V(-1)?s(-1) for a strained film. Using solution processing to modify molecular packing through lattice strain should aid the development of high-performance, low-cost organic semiconducting devices.  相似文献   
9.
Partitioning selection and complementarity in biodiversity experiments.   总被引:66,自引:0,他引:66  
M Loreau  A Hector 《Nature》2001,412(6842):72-76
The impact of biodiversity loss on the functioning of ecosystems and their ability to provide ecological services has become a central issue in ecology. Several experiments have provided evidence that reduced species diversity may impair ecosystem processes such as plant biomass production. The interpretation of these experiments, however, has been controversial because two types of mechanism may operate in combination. In the 'selection effect', dominance by species with particular traits affects ecosystem processes. In the 'complementarity effect', resource partitioning or positive interactions lead to increased total resource use. Here we present a new approach to separate the two effects on the basis of an additive partitioning analogous to the Price equation in evolutionary genetics. Applying this method to data from the pan-European BIODEPTH experiment reveals that the selection effect is zero on average and varies from negative to positive in different localities, depending on whether species with lower- or higher-than-average biomass dominate communities. In contrast, the complementarity effect is positive overall, supporting the hypothesis that plant diversity influences primary production in European grasslands through niche differentiation or facilitation.  相似文献   
10.
High plant diversity is needed to maintain ecosystem services   总被引:3,自引:0,他引:3  
Biodiversity is rapidly declining worldwide, and there is consensus that this can decrease ecosystem functioning and services. It remains unclear, though, whether few or many of the species in an ecosystem are needed to sustain the provisioning of ecosystem services. It has been hypothesized that most species would promote ecosystem services if many times, places, functions and environmental changes were considered; however, no previous study has considered all of these factors together. Here we show that 84% of the 147 grassland plant species studied in 17 biodiversity experiments promoted ecosystem functioning at least once. Different species promoted ecosystem functioning during different years, at different places, for different functions and under different environmental change scenarios. Furthermore, the species needed to provide one function during multiple years were not the same as those needed to provide multiple functions within one year. Our results indicate that even more species will be needed to maintain ecosystem functioning and services than previously suggested by studies that have either (1) considered only the number of species needed to promote one function under one set of environmental conditions, or (2) separately considered the importance of biodiversity for providing ecosystem functioning across multiple years, places, functions or environmental change scenarios. Therefore, although species may appear functionally redundant when one function is considered under one set of environmental conditions, many species are needed to maintain multiple functions at multiple times and places in a changing world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号