首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
现状及发展   1篇
研究方法   2篇
综合类   3篇
  2013年   1篇
  2012年   1篇
  2004年   2篇
  2002年   1篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 578 毫秒
1
1.
Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis.   总被引:22,自引:0,他引:22  
R Agami  G Blandino  M Oren  Y Shaul 《Nature》1999,399(6738):809-813
c-Abl, a non-receptor tyrosine kinase, is activated by agents that damage DNA. This activation results in either arrest of the cell cycle in phase G1 or apoptotic cell death, both of which are dependent on the kinase activity of c-Abl. p73, a member of the p53 family of tumour-suppressor proteins, can also induce apoptosis. Here we show that the apoptotic activity of p73alpha requires the presence of functional, kinase-competent c-Abl. Furthermore, p73 and c-Abl can associate with each other, andthis binding is mediated by a PxxP motif in p73 and the SH3 domain of c-Abl. We find that p73 is a substrate of the c-Abl kinase and that the ability of c-Abl to phosphorylate p73 is markedly increased by gamma-irradiation. Moreover, p73 is phosphorylated in vivo in response to ionizing radiation. These findings define a pro-apoptotic signalling pathway involving p73 and c-Abl.  相似文献   
2.
Wiener R  Zhang X  Wang T  Wolberger C 《Nature》2012,483(7391):618-622
Histones are ubiquitinated in response to DNA double-strand breaks (DSB), promoting recruitment of repair proteins to chromatin. UBC13 (also known as UBE2N) is a ubiquitin-conjugating enzyme (E2) that heterodimerizes with UEV1A (also known as UBE2V1) and synthesizes K63-linked polyubiquitin (K63Ub) chains at DSB sites in concert with the ubiquitin ligase (E3), RNF168 (ref. 3). K63Ub synthesis is regulated in a non-canonical manner by the deubiquitinating enzyme, OTUB1 (OTU domain-containing ubiquitin aldehyde-binding protein 1), which binds preferentially to the UBC13~Ub thiolester. Residues amino-terminal to the OTU domain, which had been implicated in ubiquitin binding, are required for binding to UBC13~Ub and inhibition of K63Ub synthesis. Here we describe structural and biochemical studies elucidating how OTUB1 inhibits UBC13 and other E2 enzymes. We unexpectedly find that OTUB1 binding to UBC13~Ub is allosterically regulated by free ubiquitin, which binds to a second site in OTUB1 and increases its affinity for UBC13~Ub, while at the same time disrupting interactions with UEV1A in a manner that depends on the OTUB1 N terminus. Crystal structures of an OTUB1-UBC13 complex and of OTUB1 bound to ubiquitin aldehyde and a chemical UBC13~Ub conjugate show that binding of free ubiquitin to OTUB1 triggers conformational changes in the OTU domain and formation of a ubiquitin-binding helix in the N terminus, thus promoting binding of the conjugated donor ubiquitin in UBC13~Ub to OTUB1. The donor ubiquitin thus cannot interact with the E2 enzyme, which has been shown to be important for ubiquitin transfer. The N-terminal helix of OTUB1 is positioned to interfere with UEV1A binding to UBC13, as well as with attack on the thiolester by an acceptor ubiquitin, thereby inhibiting K63Ub synthesis. OTUB1 binding also occludes the RING E3 binding site on UBC13, thus providing a further component of inhibition. The general features of the inhibition mechanism explain how OTUB1 inhibits other E2 enzymes in a non-catalytic manner.  相似文献   
3.
Bax and Bak (Bax/Bak) are essential pro-apoptotic proteins of the Bcl-2 family that trigger mitochondrial outer membrane permeabilization (MOMP) in a Bcl-2/Bcl-xL-inhibitable manner. We recently discovered a new stress-related function for Bax/Bak—regulation of nuclear protein redistribution (NPR) from the nucleus to cytoplasm. This effect was independent of Bax/Bak N-terminus exposure and not inhibited by Bcl-xL over-expression. Here, we studied the molecular mechanism governing this novel non-canonical response. Wild-type (WT) and mutant versions of Bax were re-expressed in Bax/Bak double-knockout mouse embryonic fibroblasts and their ability to promote NPR, apoptotic events, and changes in lamin A mobility was examined. Our results show that, in this system, Bax expression was sufficient to restore NPR such as in WT cells undergoing apoptosis. This activity of Bax was uncoupled from cytochrome c release from the mitochondria (indicative of MOMP) and required its membrane localization, α helices 5/6, and the Bcl-2 homology 3 (BH3) domain. Moreover, enrichment of Bax in the nuclear envelope by the so-called Klarsicht/ANC-1/Syne-1 homology domain effectively triggered NPR as in WT Bax, but without inducing MOMP or cell death. Bax-induced NPR was associated with impairment in lamin A mobility, implying a connection between these two nuclear envelope-associated events. Overall, the results indicate a new MOMP-independent, stress-induced Bax function on the nuclear envelope.  相似文献   
4.
RNA interference (RNAi) is a powerful new tool with which to perform loss-of-function genetic screens in lower organisms and can greatly facilitate the identification of components of cellular signalling pathways. In mammalian cells, such screens have been hampered by a lack of suitable tools that can be used on a large scale. We and others have recently developed expression vectors to direct the synthesis of short hairpin RNAs (shRNAs) that act as short interfering RNA (siRNA)-like molecules to stably suppress gene expression. Here we report the construction of a set of retroviral vectors encoding 23,742 distinct shRNAs, which target 7,914 different human genes for suppression. We use this RNAi library in human cells to identify one known and five new modulators of p53-dependent proliferation arrest. Suppression of these genes confers resistance to both p53-dependent and p19ARF-dependent proliferation arrest, and abolishes a DNA-damage-induced G1 cell-cycle arrest. Furthermore, we describe siRNA bar-code screens to rapidly identify individual siRNA vectors associated with a specific phenotype. These new tools will greatly facilitate large-scale loss-of-function genetic screens in mammalian cells.  相似文献   
5.
Familial tumoral calcinosis (FTC; OMIM 211900) is a severe autosomal recessive metabolic disorder that manifests with hyperphosphatemia and massive calcium deposits in the skin and subcutaneous tissues. Using linkage analysis, we mapped the gene underlying FTC to 2q24-q31. This region includes the gene GALNT3, which encodes a glycosyltransferase responsible for initiating mucin-type O-glycosylation. Sequence analysis of GALNT3 identified biallelic deleterious mutations in all individuals with FTC, suggesting that defective post-translational modification underlies the disease.  相似文献   
6.
The syndrome of congenital hypoparathyroidism, mental retardation, facial dysmorphism and extreme growth failure (HRD or Sanjad-Sakati syndrome; OMIM 241410) is an autosomal recessive disorder reported almost exclusively in Middle Eastern populations. A similar syndrome with the additional features of osteosclerosis and recurrent bacterial infections has been classified as autosomal recessive Kenny-Caffey syndrome (AR-KCS; OMIM 244460). Both traits have previously been mapped to chromosome 1q43-44 (refs 5,6) and, despite the observed clinical variability, share an ancestral haplotype, suggesting a common founder mutation. We describe refinement of the critical region to an interval of roughly 230 kb and identification of deletion and truncation mutations of TBCE in affected individuals. The gene TBCE encodes one of several chaperone proteins required for the proper folding of alpha-tubulin subunits and the formation of alpha-beta-tubulin heterodimers. Analysis of diseased fibroblasts and lymphoblastoid cells showed lower microtubule density at the microtubule-organizing center (MTOC) and perturbed microtubule polarity in diseased cells. Immunofluorescence and ultrastructural studies showed disturbances in subcellular organelles that require microtubules for membrane trafficking, such as the Golgi and late endosomal compartments. These findings demonstrate that HRD and AR-KCS are chaperone diseases caused by a genetic defect in the tubulin assembly pathway, and establish a potential connection between tubulin physiology and the development of the parathyroid.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号