首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
综合类   13篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
应用金属蒸气法制备了三种金属含量比不同的Pd-Cu/C燃料电池电极。XRD和TEM测定结果表明Pd和Cu已形成合金,合金的颗粒很小,平均直径小于5nm。XPS和Auger能谱说明Pd和Cu均以零价态存在。极化曲线实验结果看出,随着催化剂中Cu比例增加,电极的催化活性略有增加.KOH溶液浓度(1~5摩尔/升)增大,电极活性随极化电流改变减小。  相似文献   
2.
3.
采用高能球磨法制备了Mg x%Mm(NiCoMnAl)_5(x=10、20、30和40)纳米晶和非晶混合结构的复合储氢材料,并对其结构和吸放氢性能进行了研究.XRD结果表明,Mg与Mm(NiCoMnAl)_5球磨200h后有Mg_2Ni和La_2Mg_(17)相生成.吸氢动力学研究发现,在423K和3.4 MPa下,随着x增大,吸氢速率和最大吸氢量都出现了先增大后减小的趋势.当x=20时,复合材料的吸氢性能达到最佳,其最大吸氢速率达到0.45%/s,50s内即可吸氢3.6%.热重分析结果表明,Mg的氢化物相放氢温度降低到259℃(x=40).  相似文献   
4.
5.
D型MH/Ni电池过放电机理的研究   总被引:2,自引:0,他引:2  
通过对D型密封MH/Ni电池在放电过程中电池电压和放电容量以及开口MH/Ni电池在放电过程中电池电压、正负极电极电位和放电容量的关系分析,探讨了电池的过放电机理。发现电池在放电全过程中存在着三种反应过程,而当电池深度过放电时,正极上析出氢气,负极上析出氧气。本文还采用循环伏安法对电池正负极的反应过程进行了研究,从而进一步说明了电池的过放电机理。  相似文献   
6.
Ml(NiCuAlZn)5合金制备及其电化学性能研究   总被引:1,自引:0,他引:1  
利用中间合金法制备了无钴含锌混合稀土系储氢合金电级材料Ml(NiCuAlZn)5,并对其晶体结构、热力学及电化学性能进行了研究。  相似文献   
7.
Ni/MH电池和电池组放电过程中剩余容量的估算   总被引:4,自引:0,他引:4  
以D型镍氢电池或电池组在一定的工作电流范围内,测出不同放电电流下的一组放电曲线,结合Peukert公式的适当变化,利用计算机程序实现了电池(或电池组)在任一工作电流下的放电曲线的模拟,模拟得到的曲线与实际测量的曲线极其相近,达到了对电池或电池组荷电状态及尚能继续工作时间的估算。  相似文献   
8.
PVA-PAA-KOH碱性凝胶聚合物电解质薄膜的研究   总被引:2,自引:0,他引:2  
由聚乙烯醇(PVA)和聚丙烯酸(PAA)成功制备了PVA-PAA-KOH碱性凝胶聚合物电解质薄膜.XRD结果表明,PAA和KOH的加入,有效降低了PVA的结晶程度,并使得该薄膜处于无定形态.交流阻抗结果表明,该薄膜的电导率随着PVA含量的增加而减小.当薄膜组成为PVA:AA:KOH=10:50:40(质量比)时,其室温电导率最大,为2.4×10-2S/cm.循环伏安(CV)和激光拉曼光谱结果表明,该电解质膜具有较好的电化学稳定性.以此薄膜为电解质组装聚合物镍氢二次电池,结果表明,与碱性水溶液为电解液的电池相比,该聚合物电池具有较优的循环寿命,低倍率放电性能良好.  相似文献   
9.
容量为10A·h的KJ-12型极板盒式镍一镉蓄电池,用2A恒电流充电,过充电时析出氢、氧混合气体的速度为17.82ml/min。电池在过充电初期,氢与氧含量的比例为非定比,开始析出的混合气体中,氧的含量高于氢的含量。氢与氧相对含量发生急剧变化所需电量,随充电电流的大小而变化。1A恒电流充电时为5.0A·h,2A恒电流充电时为3.2A·h,3A恒电流充电时为1.3A·h。  相似文献   
10.
采用溶剂法制备了聚丙烯酸(PAA)-KOH碱性聚合物电解质薄膜.循环伏安(CV)和激光拉曼光谱(Raman)结果表明,该电解质膜具有较好的电化学稳定性.交流阻抗(EIS)结果表明,随着KOH含量的增加,该薄膜的离子电导率先增大后减小.当PAA:KOH的质量比为10:21时,薄膜电导率最大,为2.7×10-2S/cm.将该薄膜应用于以AB3金为负极活性物质的镍氢二次电池中.结果表明,与以KOH水溶液为电解质的电池相比,聚合物电池具有更优的循环寿命,但倍率性能仍需改善.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号