首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
现状及发展   3篇
研究方法   6篇
综合类   3篇
自然研究   1篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Hypertonia, which results from motor pathway defects in the central nervous system (CNS), is observed in numerous neurological conditions, including cerebral palsy, stroke, spinal cord injury, stiff-person syndrome, spastic paraplegia, dystonia and Parkinson disease. Mice with mutation in the hypertonic (hyrt) gene exhibit severe hypertonia as their primary symptom. Here we show that hyrt mutant mice have much lower levels of gamma-aminobutyric acid type A (GABA(A)) receptors in their CNS, particularly the lower motor neurons, than do wild-type mice, indicating that the hypertonicity of the mutants is likely to be caused by deficits in GABA-mediated motor neuron inhibition. We cloned the responsible gene, trafficking protein, kinesin binding 1 (Trak1), and showed that its protein product interacts with GABA(A) receptors. Our data implicate Trak1 as a crucial regulator of GABA(A) receptor homeostasis and underscore the importance of hyrt mice as a model for studying the molecular etiology of hypertonia associated with human neurological diseases.  相似文献   
2.
The protective effect of high density lipoproteins (HDL) against atherosclerosis is mainly attributed to their capacity to transport excess cholesterol from peripheral tissues back to the liver for further elimination into the bile, a process called reverse cholesterol transport (RCT). Recently, the importance of the P2Y13 receptor (P2Y13-R) was highlighted in HDL metabolism since HDL uptake by the liver was decreased in P2Y13-R deficient mice, which translated into impaired RCT. Here, we investigated for the first time the molecular mechanisms regulating cell surface expression of P2Y13-R. When transiently expressed, P2Y13-R was mainly detected in the endoplasmic reticulum (ER) and strongly subjected to proteasome degradation while its homologous P2Y12 receptor (P2Y12-R) was efficiently targeted to the plasma membrane. We observed an inverse correlation between cell surface expression and ubiquitination level of P2Y13-R in the ER, suggesting a close link between ubiquitination of P2Y13-R and its efficient targeting to the plasma membrane. The C-terminus tail exchange between P2Y13-R and P2Y12-R strongly restored plasma membrane expression of P2Y13-R, suggesting the involvement of the intra-cytoplasmic tail of P2Y13-R in expression defect. Accordingly, proteasomal inhibition increased plasma membrane expression of functionally active P2Y13-R in hepatocytes, and consequently stimulated P2Y13-R-mediated HDL endocytosis. Importantly, proteasomal inhibition strongly potentiated HDL hepatic uptake (>200 %) in wild-type but not in P2Y13-R-deficient mice, thus reinforcing the role of P2Y13-R expression in regulating HDL metabolism. Therefore, specific inhibition of the ubiquitin–proteasome system might be a novel powerful HDL therapy to enhance P2Y13-R expression and consequently promote the overall RCT.  相似文献   
3.
Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term “checkpoint” was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in Saccharomyces cerevisiae, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells.  相似文献   
4.
Silver-Russell syndrome (SRS, OMIM 180860) is a congenital disorder characterized by severe intrauterine and postnatal growth retardation, dysmorphic facial features and body asymmetry. SRS is genetically heterogenous with maternal uniparental disomy with respect to chromosome 7 occurring in approximately 10% of affected individuals. Given the crucial role of the 11p15 imprinted region in the control of fetal growth, we hypothesized that dysregulation of genes at 11p15 might be involved in syndromic intrauterine growth retardation. We identified an epimutation (demethylation) in the telomeric imprinting center region ICR1 of the 11p15 region in several individuals with clinically typical SRS. This epigenetic defect is associated with, and probably responsible for, relaxation of imprinting and biallelic expression of H19 and downregulation of IGF2. These findings provide new insight into the pathogenesis of SRS and strongly suggest that the 11p15 imprinted region, in addition to those of 7p11.2-p13 and 7q31-qter, is involved in SRS.  相似文献   
5.
Misfolded proteins are associated with several pathological conditions including neurodegeneration. Although some of these abnormally folded proteins result from mutations in genes encoding disease-associated proteins (for example, repeat-expansion diseases), more general mechanisms that lead to misfolded proteins in neurons remain largely unknown. Here we demonstrate that low levels of mischarged transfer RNAs (tRNAs) can lead to an intracellular accumulation of misfolded proteins in neurons. These accumulations are accompanied by upregulation of cytoplasmic protein chaperones and by induction of the unfolded protein response. We report that the mouse sticky mutation, which causes cerebellar Purkinje cell loss and ataxia, is a missense mutation in the editing domain of the alanyl-tRNA synthetase gene that compromises the proofreading activity of this enzyme during aminoacylation of tRNAs. These findings demonstrate that disruption of translational fidelity in terminally differentiated neurons leads to the accumulation of misfolded proteins and cell death, and provide a novel mechanism underlying neurodegeneration.  相似文献   
6.
The bacterial genus Bartonella comprises 21 pathogens causing characteristic intraerythrocytic infections. Bartonella bacilliformis is a severe pathogen representing an ancestral lineage, whereas the other species are benign pathogens that evolved by radial speciation. Here, we have used comparative and functional genomics to infer pathogenicity genes specific to the radiating lineage, and we suggest that these genes may have facilitated adaptation to the host environment. We determined the complete genome sequence of Bartonella tribocorum by shotgun sequencing and functionally identified 97 pathogenicity genes by signature-tagged mutagenesis. Eighty-one pathogenicity genes belong to the core genome (1,097 genes) of the radiating lineage inferred from genome comparison of B. tribocorum, Bartonella henselae and Bartonella quintana. Sixty-six pathogenicity genes are present in B. bacilliformis, and one has been lost by deletion. The 14 pathogenicity genes specific for the radiating lineage encode two laterally acquired type IV secretion systems, suggesting that these systems have a role in host adaptability.  相似文献   
7.
The anti-ulcer drug geranylgeranylacetone (GGA) has been shown to induce the expression of heat shock proteins (HSPs), in particular of Hsp70, in gastric and small intestine cells. In this study, we investigated whether GGA was able to induce Hsp70 in another cell type, human monocytes, which represent a well-established model of Hsp70 expression under oxidative stress. In these cells, GGA had no significant effect either on basal or tobacco smoke-induced Hsp70 expression. We further investigated the effects of GGA on mitochondria, a key organelle of oxidant-mediated cell injury and a putative target for GGA-mediated protection. GGA significantly increased basal mitochondrial membrane polarization and inhibited the decrease in mitochondrial membrane potential of human monocytes exposed to distinct sources of clinically relevant oxidants such as tobacco smoke and y-irradiation. Our results indicate that mitochondria are targets for GGA-mediated protection against oxidative stress in human monocytes, independently of Hsp70.  相似文献   
8.
Jager M  Murienne J  Clabaut C  Deutsch J  Le Guyader H  Manuel M 《Nature》2006,441(7092):506-508
Arthropod head segments offer a paradigm for understanding the diversification of form during evolution, as a variety of morphologically diverse appendages have arisen from them. There has been long-running controversy, however, concerning which head appendages are homologous among arthropods, and from which ancestral arrangement they have been derived. This controversy has recently been rekindled by the proposition that the probable ancestral arrangement, with appendages on the first head segment, has not been lost in all extant arthropods as previously thought, but has been retained in the pycnogonids, or sea spiders. This proposal was based on the neuroanatomical analysis of larvae from the sea spider Anoplodactylus sp., and suggested that the most anterior pair of appendages, the chelifores, are innervated from the first part of the brain, the protocerebrum. Our examination of Hox gene expression in another sea spider, Endeis spinosa, refutes this hypothesis. The anterior boundaries of Hox gene expression domains place the chelifore appendages as clearly belonging to the second head segment, innervated from the second part of the brain, the deutocerebrum. The deutocerebrum must have been secondarily displaced towards the protocerebrum in pycnogonid ancestors. As anterior-most appendages are also deutocerebral in the other two arthropod groups, the Euchelicerata and the Mandibulata, we conclude that the protocerebral appendages have been lost in all extant arthropods.  相似文献   
9.
We used an exome-sequencing strategy and identified an allelic series of NOTCH2 mutations in Hajdu-Cheney syndrome, an autosomal dominant multisystem disorder characterized by severe and progressive bone loss. The Hajdu-Cheney syndrome mutations are predicted to lead to the premature truncation of NOTCH2 with either disruption or loss of the C-terminal proline-glutamate-serine-threonine-rich proteolytic recognition sequence, the absence of which has previously been shown to increase Notch signaling.  相似文献   
10.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous ciliopathy. Although nine BBS genes have been cloned, they explain only 40-50% of the total mutational load. Here we report a major new BBS locus, BBS10, that encodes a previously unknown, rapidly evolving vertebrate-specific chaperonin-like protein. We found BBS10 to be mutated in about 20% of an unselected cohort of families of various ethnic origins, including some families with mutations in other BBS genes, consistent with oligogenic inheritance. In zebrafish, mild suppression of bbs10 exacerbated the phenotypes of other bbs morphants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号