首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   0篇
现状及发展   15篇
研究方法   6篇
综合类   44篇
  2018年   1篇
  2015年   1篇
  2012年   1篇
  2011年   3篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1992年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1977年   2篇
  1971年   2篇
  1970年   2篇
  1967年   4篇
  1966年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
1.
2.
Sato T  Mushiake S  Kato Y  Sato K  Sato M  Takeda N  Ozono K  Miki K  Kubo Y  Tsuji A  Harada R  Harada A 《Nature》2007,448(7151):366-369
A number of proteins are known to be involved in apical/basolateral transport of proteins in polarized epithelial cells. The small GTP-binding protein Rab8 was thought to regulate basolateral transport in polarized kidney epithelial cells through the AP1B-complex-mediated pathway. However, the role of Rab8 (Rab8A) in cell polarity in vivo remains unknown. Here we show that Rab8 is responsible for the localization of apical proteins in intestinal epithelial cells. We found that apical peptidases and transporters localized to lysosomes in the small intestine of Rab8-deficient mice. Their mislocalization and degradation in lysosomes led to a marked reduction in the absorption rate of nutrients in the small intestine, and ultimately to death. Ultrastructurally, a shortening of apical microvilli, an increased number of enlarged lysosomes, and microvillus inclusions in the enterocytes were also observed. One microvillus inclusion disease patient who shows an identical phenotype to Rab8-deficient mice expresses a reduced amount of RAB8 (RAB8A; NM_005370). Our results demonstrate that Rab8 is necessary for the proper localization of apical proteins and the absorption and digestion of various nutrients in the small intestine.  相似文献   
3.
4.
5.
S Takeda  T Naito  K Hama  T Noma  T Honjo 《Nature》1985,314(6010):452-454
The specificity of monoclonal antibodies provides a powerful diagnostic and therapeutic tool in investigating human neoplasia. Radiological scanning and immunotherapy with mouse tumour-specific monoclonal antibodies have been applied to patients with some success, but a major problem is the neutralization of the mouse antibody induced by repeated administration of heterologous antibodies. To avoid or reduce such immune reactions, chimaeric immunoglobulins consisting of mouse variable (V) and human constant (C) regions can be synthesized. We have constructed a recombinant retrovirus DNA carrying genomic heavy-chain (H) variable-diversity joining (VH-D-JH) and C gamma 1 genes from different species and show here that the chimaeric intervening sequences are spliced out precisely. This procedure provides a useful method to construct the chimaeric mouse-human immunoglobulin gene to be expressed in Escherichia coli, yeast and animal cells. Unexpectedly, a hidden splice donor site in the 5'-flanking region of a human VH gene is used in place of the donor site of the leader sequence exon, resulting in the formation of the V region without the leader sequence.  相似文献   
6.
N Vionnet  M Stoffel  J Takeda  K Yasuda  G I Bell  H Zouali  S Lesage  G Velho  F Iris  P Passa 《Nature》1992,356(6371):721-722
Maturity-onset diabetes of the young (MODY) is a form of non-insulin-dependent (type 2) diabetes mellitus (NIDDM) which is characterized by an early age at onset and an autosomal dominant mode of inheritance. Except for these features, the clinical characteristics of patients with MODY are similar to those with the more common late-onset form(s) of NIDDM. Previously we observed tight linkage between DNA polymorphisms in the glucokinase gene on the short arm of chromosome 7 and NIDDM in a cohort of sixteen French families having MODY. Glucokinase is an enzyme that catalyses the formation of glucose-6-phosphate from glucose and may be involved in the regulation of insulin secretion and integration of hepatic intermediary metabolism. Because the glucokinase gene was a candidate for the site of the genetic lesion in these families, we scanned this gene for mutations. Here we report the identification of a nonsense mutation in the gene encoding glucokinase and its linkage with early-onset diabetes in one family. To our knowledge, this result is the first evidence implicating a mutation in a gene involved in glucose metabolism in the pathogenesis of NIDDM.  相似文献   
7.
8.
9.
Horikawa K  Ishimatsu K  Yoshimoto E  Kondo S  Takeda H 《Nature》2006,441(7094):719-723
Periodic somite segmentation in vertebrate embryos is controlled by the 'segmentation clock', which consists of numerous cellular oscillators. Although the properties of a single oscillator, driven by a hairy negative-feedback loop, have been investigated, the system-level properties of the segmentation clock remain largely unknown. To explore these characteristics, we have examined the response of a normally oscillating clock in zebrafish to experimental stimuli using in vivo mosaic experiments and mathematical simulation. We demonstrate that the segmentation clock behaves as a coupled oscillator, by showing that Notch-dependent intercellular communication, the activity of which is regulated by the internal hairy oscillator, couples neighbouring cells to facilitate synchronized oscillation. Furthermore, the oscillation phase of individual oscillators fluctuates due to developmental noise such as stochastic gene expression and active cell proliferation. The intercellular coupling was found to have a crucial role in minimizing the effects of this noise to maintain coherent oscillation.  相似文献   
10.
Corneal avascularity-the absence of blood vessels in the cornea-is required for optical clarity and optimal vision, and has led to the cornea being widely used for validating pro- and anti-angiogenic therapeutic strategies for many disorders. But the molecular underpinnings of the avascular phenotype have until now remained obscure and are all the more remarkable given the presence in the cornea of vascular endothelial growth factor (VEGF)-A, a potent stimulator of angiogenesis, and the proximity of the cornea to vascularized tissues. Here we show that the cornea expresses soluble VEGF receptor-1 (sVEGFR-1; also known as sflt-1) and that suppression of this endogenous VEGF-A trap by neutralizing antibodies, RNA interference or Cre-lox-mediated gene disruption abolishes corneal avascularity in mice. The spontaneously vascularized corneas of corn1 and Pax6+/- mice and Pax6+/- patients with aniridia are deficient in sflt-1, and recombinant sflt-1 administration restores corneal avascularity in corn1 and Pax6+/- mice. Manatees, the only known creatures uniformly to have vascularized corneas, do not express sflt-1, whereas the avascular corneas of dugongs, also members of the order Sirenia, elephants, the closest extant terrestrial phylogenetic relatives of manatees, and other marine mammals (dolphins and whales) contain sflt-1, indicating that it has a crucial, evolutionarily conserved role. The recognition that sflt-1 is essential for preserving the avascular ambit of the cornea can rationally guide its use as a platform for angiogenic modulators, supports its use in treating neovascular diseases, and might provide insight into the immunological privilege of the cornea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号