首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
研究方法   1篇
综合类   3篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2001年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
以血红素为原料 ,用间苯二酚作还原剂 ,将血红素还原为亚血红素 ,并用硅胶柱分离纯化 ,得到纯品亚血红素 .此种分离纯化方法简单 ,快速 ,得到的亚血红素纯度较高 ,可以为有机合成提供高纯度的原材料  相似文献   
2.
Cai H  Yu S  Menon S  Cai Y  Lazarova D  Fu C  Reinisch K  Hay JC  Ferro-Novick S 《Nature》2007,445(7130):941-944
The budding of endoplasmic reticulum (ER)-derived vesicles is dependent on the COPII coat complex. Coat assembly is initiated when Sar1-GTP recruits the cargo adaptor complex, Sec23/Sec24, by binding to its GTPase-activating protein (GAP) Sec23 (ref. 2). This leads to the capture of transmembrane cargo by Sec24 (refs 3, 4) before the coat is polymerized by the Sec13/Sec31 complex. The initial interaction of a vesicle with its target membrane is mediated by tethers. We report here that in yeast and mammalian cells the tethering complex TRAPPI (ref. 7) binds to the coat subunit Sec23. This event requires the Bet3 subunit. In vitro studies demonstrate that the interaction between Sec23 and Bet3 targets TRAPPI to COPII vesicles to mediate vesicle tethering. We propose that the binding of TRAPPI to Sec23 marks a coated vesicle for fusion with another COPII vesicle or the Golgi apparatus. An implication of these findings is that the intracellular destination of a transport vesicle may be determined in part by its coat and its associated cargo.  相似文献   
3.
We identified association of restless legs syndrome (RLS) with PTPRD at 9p23-24 in 2,458 affected individuals and 4,749 controls from Germany, Austria, Czechia and Canada. Two independent SNPs in the 5' UTR of splice variants expressed predominantly in the central nervous system showed highly significant P values (rs4626664, P(nominal/lambda corrected) = 5.91 x 10(-10), odds ratio (OR) = 1.44; rs1975197, P(nominal/lambda corrected) = 5.81 x 10(-9), OR = 1.31). This work identifies PTPRD as the fourth genome-wide significant locus for RLS.  相似文献   
4.
Hearing relies on faithful synaptic transmission at the ribbon synapse of cochlear inner hair cells (IHCs). At present, the function of presynaptic ribbons at these synapses is still largely unknown. Here we show that anchoring of IHC ribbons is impaired in mouse mutants for the presynaptic scaffolding protein Bassoon. The lack of active-zone-anchored synaptic ribbons reduced the presynaptic readily releasable vesicle pool, and impaired synchronous auditory signalling as revealed by recordings of exocytic IHC capacitance changes and sound-evoked activation of spiral ganglion neurons. Both exocytosis of the hair cell releasable vesicle pool and the number of synchronously activated spiral ganglion neurons co-varied with the number of anchored ribbons during development. Interestingly, ribbon-deficient IHCs were still capable of sustained exocytosis with normal Ca2+-dependence. Endocytic membrane retrieval was intact, but an accumulation of tubular and cisternal membrane profiles was observed in ribbon-deficient IHCs. We conclude that ribbon-dependent synchronous release of multiple vesicles at the hair cell afferent synapse is essential for normal hearing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号