首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   2篇
  国内免费   1篇
现状及发展   16篇
研究方法   10篇
综合类   39篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   8篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   7篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   7篇
  2002年   3篇
  1999年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1980年   2篇
  1975年   1篇
排序方式: 共有65条查询结果,搜索用时 78 毫秒
1.
Cpdm (chronic proliferative dermatitis) mice develop chronic dermatitis and an immunodeficiency with increased serum IgM, symptoms that resemble those of patients with X-linked hyper-IgM syndrome and hypohydrotic ectodermal dysplasia (XHM-ED), which is caused by mutations in NEMO (NF-κB essential modulator; also known as IKBKG). Spontaneous null mutations in the Sharpin (SHANK-associated RH domain interacting protein in postsynaptic density) gene are responsible for the cpdm phenotype in mice. SHARPIN shows significant similarity to HOIL-1L (also known as RBCK1), a component of linear ubiquitin chain assembly complex (LUBAC), which induces NF-κB activation through conjugation of linear polyubiquitin chains to NEMO. Here, we identify SHARPIN as an additional component of LUBAC. SHARPIN-containing complexes can linearly ubiquitinate NEMO and activated NF-κB. Thus, we re-define LUBAC as a complex containing SHARPIN, HOIL-1L, and HOIP (also known as RNF31). Deletion of SHARPIN drastically reduced the amount of LUBAC, which resulted in attenuated TNF-α- and CD40-mediated activation of NF-κB in mouse embryonic fibroblasts (MEFs) or B cells from cpdm mice. Considering the pleomorphic phenotype of cpdm mice, these results confirm the predicted role of LUBAC-mediated linear polyubiquitination in NF-κB activation induced by various stimuli, and strongly suggest the involvement of LUBAC-induced NF-κB activation in various disorders.  相似文献   
2.
Kawasaki disease is a pediatric systemic vasculitis of unknown etiology for which a genetic influence is suspected. We identified a functional SNP (itpkc_3) in the inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) gene on chromosome 19q13.2 that is significantly associated with Kawasaki disease susceptibility and also with an increased risk of coronary artery lesions in both Japanese and US children. Transfection experiments showed that the C allele of itpkc_3 reduces splicing efficiency of the ITPKC mRNA. ITPKC acts as a negative regulator of T-cell activation through the Ca2+/NFAT signaling pathway, and the C allele may contribute to immune hyper-reactivity in Kawasaki disease. This finding provides new insights into the mechanisms of immune activation in Kawasaki disease and emphasizes the importance of activated T cells in the pathogenesis of this vasculitis.  相似文献   
3.
4.
T Sakurai  M Yanagisawa  Y Takuwa  H Miyazaki  S Kimura  K Goto  T Masaki 《Nature》1990,348(6303):732-735
Endothelin-1 was initially identified as a 21-residue potent vasoconstrictor peptide produced by vascular endothelial cells, but was subsequently found to have many effects on both vascular and non-vascular tissues. The discovery of three isopeptides of the endothelin family, ET-1, ET-2 and ET-3, each possessing a diverse set of pharmacological activities of different potency, suggested the existence of several different endothelin receptor subtypes. Endothelins may elicit biological responses by various signal-transduction mechanisms, including the G protein-coupled activation of phospholipase C and the activation of voltage-dependent Ca2+ channels. Thus, different subtypes of the endothelin receptor may use different signal-transduction mechanisms. Here we report the cloning of a complementary DNA encoding one subtype belonging to the superfamily of G protein-coupled receptors. COS-7 cells transfected with the cDNA express specific and high-affinity binding sites for endothelins, responding to binding by the production of inositol phosphates and a transient increase in the concentration of intracellular free Ca2+. The three endothelin isopeptides are roughly equipotent in displacing 125I-labelled ET-1 binding and causing Ca2+ mobilization. A messenger RNA corresponding to the cDNA is detected in many rat tissues including the brain, kidney and lung but not in vascular smooth muscle cells. These results indicate that this cDNA encodes a 'nonselective' subtype of the receptor which is different from the vascular smooth muscle receptor.  相似文献   
5.
Synapses are central stages for neurotransmission. Neurotransmitters are released from the presynaptic membrane of one neuron, and bind to the receptors accumulated at the postsynaptic membrane, followed by the activation of the other neuron. The strength of a synapse is modified depending on the history of the previous neurotransmissions. This property is called synaptic plasticity and is implicated in learning and memory. Synapses contain not only the components essential for neurotransmission but also the signalling molecules involved in synaptic plasticity. The elucidation of the molecular structures of synapses is one of the key steps to understand the mechanism of learning and memory. Recent studies have revealed postsynaptic density (PSD)-95/synapse-associated protein (SAP) 90 as a core component in the architecture of synapses. In this review, we summarize up-to-date information about PSD-95/SAP90 and its interacting proteins, and the organization of synapses orchestrated  相似文献   
6.
Diabetes, a disease in which carbohydrate and lipid metabolism are regulated improperly by insulin, is a serious worldwide health issue. Insulin is secreted from pancreatic beta cells in response to elevated plasma glucose, with various factors modifying its secretion. Free fatty acids (FFAs) provide an important energy source as nutrients, and they also act as signalling molecules in various cellular processes, including insulin secretion. Although FFAs are thought to promote insulin secretion in an acute phase, this mechanism is not clearly understood. Here we show that a G-protein-coupled receptor, GPR40, which is abundantly expressed in the pancreas, functions as a receptor for long-chain FFAs. Furthermore, we show that long-chain FFAs amplify glucose-stimulated insulin secretion from pancreatic beta cells by activating GPR40. Our results indicate that GPR40 agonists and/or antagonists show potential for the development of new anti-diabetic drugs.  相似文献   
7.
The electronic transport properties of conventional three-dimensional metals are successfully described by Fermi-liquid theory. But when the dimensionality of such a system is reduced to one, the Fermi-liquid state becomes unstable to Coulomb interactions, and the conduction electrons should instead behave according to Tomonaga-Luttinger-liquid (TLL) theory. Such a state reveals itself through interaction-dependent anomalous exponents in the correlation functions, density of states and momentum distribution of the electrons. Metallic single-walled carbon nanotubes (SWNTs) are considered to be ideal one-dimensional systems for realizing TLL states. Indeed, the results of transport measurements on metal-SWNT and SWNT-SWNT junctions have been attributed to the effects of tunnelling into or between TLLs, although there remains some ambiguity in these interpretations. Direct observations of the electronic states in SWNTs are therefore needed to resolve these uncertainties. Here we report angle-integrated photoemission measurements of SWNTs. Our results reveal an oscillation in the pi-electron density of states owing to one-dimensional van Hove singularities, confirming the one-dimensional nature of the valence band. The spectral function and intensities at the Fermi level both exhibit power-law behaviour (with almost identical exponents) in good agreement with theoretical predictions for the TLL state in SWNTs.  相似文献   
8.
In most cell types, primary cilia protrude from the cell surface and act as major hubs for cell signaling, cell differentiation, and cell polarity. With the exception of some cells ciliated during cell proliferation, most cells begin to disassemble their primary cilia at cell cycle re-entry. Although the role of primary cilia disassembly on cell cycle progression is still under debate, recent data have emerged to support the idea that primary cilia exert influence on cell cycle progression. In this review, we emphasize a non-mitotic role of Aurora-A not only in the ciliary resorption at cell cycle re-entry but also in continuous suppression of cilia regeneration during cell proliferation. We also summarize recent new findings indicating that forced induction/suppression of primary cilia can affect cell cycle progression, in particular the transition from G0/G1 to S phase. In addition, we speculate how (de)ciliation affects cell cycle progression.  相似文献   
9.
1 Introduction Small ring size cycloalkanes such as cyclopropanes and cyclobutanes have been found as a basic structural constituent in a wide rang of natural products~([1]). In organic synthesis, their cycloalkanes also play an important role owing to their diversity of reaction.1IntroductionSmall ring size cycloalkanes such as cyclopropanes and cyclobutanes have beenfound as a basic structuralconstituent in a wide rang of natural products[1].In organic synthesis ,their cycloalkanes also pla…  相似文献   
10.
Summary Alfa-ketoaldehyde dehydrogenase, which was extracted and purified from human livers, may act on carbonyl compounds, such as 3-deoxyglucosone, and be involved in the control of glycation (Maillard reaction) in the body.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号