首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   0篇
  国内免费   2篇
系统科学   2篇
理论与方法论   1篇
现状及发展   33篇
研究方法   6篇
综合类   42篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   5篇
  1997年   1篇
  1993年   1篇
  1992年   6篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1972年   2篇
  1969年   2篇
  1966年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
1.
Vitamin B12 (methylcobalamin) was administered orally (3 mg/day) to 9 healthy subjects for 4 weeks. Nocturnal melatonin levels after exposure to bright light (ca. 2500 lx) were determined, as well as the levels of plasma melatonin over 24 h. The timing of sleep was also recorded. Vitamin B12 was given blind to the subjects and crossed over with placebo. We found that the 24-h melatonin rhythm was significantly phase-advanced (1.1 h) in the vitamin B12 trial as compared with that in the placebo trial. In addition, the 24-h mean of plasma melatonin level was much lower in the vitamin B12 trial than with the placebo. Furthermore, the nocturnal melatonin levels during bright light exposure were significantly lower in the vitamin B12 trial than with the placebo. On the other hand, vitamin B12 did not affect the timing of sleep. These findings raise the possibility that vitamin B12 phase-advances the human circadian rhythm by increasing the light sensitivity of the circadian clock.  相似文献   
2.
The timing of sleep and sleep EEG parameters in 10 healthy male subjects were investigated in four seasons under controlled conditions. The phase of nocturnal sleep was delayed about one and a half hours in winter as compared to that in summer. The duration of stage 4 sleep decreased and REM sleep increased significantly in winter compared with summer. The seasonality in the timing of sleep can be explained by photoperiodic time cues, but the changes in sleep EEG parameters are difficult to explain in terms of photoperiod.  相似文献   
3.
The responses of basilar arteries (BAs) to serotonin were attenuated by high \(P_{CO_2 } \) (86±1 mm Hg) and the pH matched acidotic solution ( \(P_{CO_2 } \) 37±1 mm Hg), whereas the responses of middle cerebral arteries (MCAs) were not. High \(P_{CO_2 } \) decreased the basal tone of both arteries, and the changes in basal tone due to high \(P_{CO_2 } \) were not influenced by 3×10?7 M imipramine, 10?5 M pargyline or 10?4 M aspirin. The responses of BAs to serotonin were attenuated by high \(P_{CO_2 } \) in the presence of imipramine, pargyline and aspirin. The responses of MCAs to serotonin were not influenced by high \(P_{CO_2 } \) in the presence of pargyline and aspirin, but attenuated by high \(P_{CO_2 } \) in the presence of imipramine.  相似文献   
4.
Metabolic priming by a secreted fungal effector   总被引:1,自引:0,他引:1  
Maize smut caused by the fungus Ustilago maydis is a widespread disease characterized by the development of large plant tumours. U. maydis is a biotrophic pathogen that requires living plant tissue for its development and establishes an intimate interaction zone between fungal hyphae and the plant plasma membrane. U. maydis actively suppresses plant defence responses by secreted protein effectors. Its effector repertoire comprises at least 386 genes mostly encoding proteins of unknown function and expressed exclusively during the biotrophic stage. The U. maydis secretome also contains about 150 proteins with probable roles in fungal nutrition, fungal cell wall modification and host penetration as well as proteins unlikely to act in the fungal-host interface like a chorismate mutase. Chorismate mutases are key enzymes of the shikimate pathway and catalyse the conversion of chorismate to prephenate, the precursor for tyrosine and phenylalanine synthesis. Root-knot nematodes inject a secreted chorismate mutase into plant cells likely to affect development. Here we show that the chorismate mutase Cmu1 secreted by U. maydis is a virulence factor. The enzyme is taken up by plant cells, can spread to neighbouring cells and changes the metabolic status of these cells through metabolic priming. Secreted chorismate mutases are found in many plant-associated microbes and might serve as general tools for host manipulation.  相似文献   
5.
Early infantile epileptic encephalopathy with suppression-burst (EIEE), also known as Ohtahara syndrome, is one of the most severe and earliest forms of epilepsy. Using array-based comparative genomic hybridization, we found a de novo 2.0-Mb microdeletion at 9q33.3-q34.11 in a girl with EIEE. Mutation analysis of candidate genes mapped to the deletion revealed that four unrelated individuals with EIEE had heterozygous missense mutations in the gene encoding syntaxin binding protein 1 (STXBP1). STXBP1 (also known as MUNC18-1) is an evolutionally conserved neuronal Sec1/Munc-18 (SM) protein that is essential in synaptic vesicle release in several species. Circular dichroism melting experiments revealed that a mutant form of the protein was significantly thermolabile compared to wild type. Furthermore, binding of the mutant protein to syntaxin was impaired. These findings suggest that haploinsufficiency of STXBP1 causes EIEE.  相似文献   
6.
As one of the most important second messengers, 3′,5′-cyclic adenosine monophosphate (cAMP) mediates various extracellular signals including hormones and neurotransmitters, and induces appropriate responses in diverse types of cells. Since cAMP was formerly believed to transmit signals through only two direct target molecules, protein kinase A and the cyclic nucleotide-gated channel, the sensational discovery in 1998 of another novel direct effecter of cAMP [exchange proteins directly activated by cAMP (Epac)] attracted a great deal of scientific interest in cAMP signaling. Numerous studies on Epac have since disclosed its important functions in various tissues in the body. Recently, observations of genetically manipulated mice in various pathogenic models have begun to reveal the in vivo significance of previous in vitro or cellular-level findings. Here, we focused on the function of Epac in the heart. Accumulating evidence has revealed that both Epac1 and Epac2 play important roles in the structure and function of the heart under physiological and pathological conditions. Accordingly, developing the ability to regulate cAMP-mediated signaling through Epac may lead to remarkable new therapies for the treatment of cardiac diseases.  相似文献   
7.
Motose H  Sugiyama M  Fukuda H 《Nature》2004,429(6994):873-878
Inductive cell-cell interactions are essential for controlling cell fate determination in both plants and animals; however, the chemical basis of inductive signals in plants remains little understood. A proteoglycan-like factor named xylogen mediates local and inductive cell-cell interactions required for xylem differentiation in Zinnia cells cultured in vitro. Here we describe the purification of xylogen and cloning of its complementary DNA, and present evidence for its role in planta. The polypeptide backbone of xylogen is a hybrid-type molecule with properties of both arabinogalactan proteins and nonspecific lipid-transfer proteins. Xylogen predominantly accumulates in the meristem, procambium and xylem. In the xylem, xylogen has a polar localization in the cell walls of differentiating tracheary elements. Double knockouts of Arabidopsis lacking both genes that encode xylogen proteins show defects in vascular development: discontinuous veins, improperly interconnected vessel elements and simplified venation. Our results suggest that the polar secretion of xylogen draws neighbouring cells into the pathway of vascular differentiation to direct continuous vascular development, thereby identifying a molecule that mediates an inductive cell-cell interaction involved in plant tissue differentiation.  相似文献   
8.
The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.  相似文献   
9.
The eye lens is composed of fibre cells, which develop from the epithelial cells on the anterior surface of the lens. Differentiation into a lens fibre cell is accompanied by changes in cell shape, the expression of crystallins and the degradation of cellular organelles. The loss of organelles is believed to ensure the transparency of the lens, but the molecular mechanism behind this process is not known. Here we show that DLAD ('DNase II-like acid DNase', also called DNase IIbeta) is expressed in human and murine lens cells, and that mice deficient in the DLAD gene are incapable of degrading DNA during lens cell differentiation--the undigested DNA accumulates in the fibre cells. The DLAD-/- mice develop cataracts of the nucleus lentis, and their response to light on electroretinograms is severely reduced. These results indicate that DLAD is responsible for the degradation of nuclear DNA during lens cell differentiation, and that if DNA is left undigested in the lens, it causes cataracts of the nucleus lentis, blocking the light path.  相似文献   
10.
Functional architecture of an intracellular membrane t-SNARE   总被引:6,自引:0,他引:6  
Lipid bilayer fusion is mediated by SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) located on the vesicle membrane (v-SNAREs) and the target membrane (t-SNAREs). The assembled v-SNARE/t-SNARE complex consists of a bundle of four helices, of which one is supplied by the v-SNARE and the other three by the t-SNARE. For t-SNAREs on the plasma membrane, the protein syntaxin supplies one helix and a SNAP-25 protein contributes the other two. Although there are numerous homologues of syntaxin on intracellular membranes, there are only two SNAP-25-related proteins in yeast, Sec9 and Spo20, both of which are localized to the plasma membrane and function in secretion and sporulation, respectively. What replaces SNAP-25 in t-SNAREs of intracellular membranes? Here we show that an intracellular t-SNARE is built from a 'heavy chain' homologous to syntaxin and two separate non-syntaxin 'light chains'. SNAP-25 may thus be the exception rather than the rule, having been derived from genes that encoded separate light chains that fused during evolution to produce a single gene encoding one protein with two helices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号