首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
研究方法   3篇
综合类   1篇
  2011年   1篇
  2005年   1篇
  2003年   2篇
排序方式: 共有4条查询结果,搜索用时 421 毫秒
1
1.
Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative beta-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.  相似文献   
2.
Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of invasive infection can be as high as 50% and the mortality rate is often about 50% (ref. 2). The interaction of A. fumigatus and other airborne fungi with the immune system is increasingly linked to severe asthma and sinusitis. Although the burden of invasive disease caused by A. fumigatus is substantial, the basic biology of the organism is mostly obscure. Here we show the complete 29.4-megabase genome sequence of the clinical isolate Af293, which consists of eight chromosomes containing 9,926 predicted genes. Microarray analysis revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype. The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus.  相似文献   
3.
Mutations in LMAN1 (also called ERGIC-53) result in combined deficiency of factor V and factor VIII (F5F8D), an autosomal recessive bleeding disorder characterized by coordinate reduction of both clotting proteins. LMAN1 is a mannose-binding type 1 transmembrane protein localized to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC; refs. 2,3), suggesting that F5F8D could result from a defect in secretion of factor V and factor VIII (ref. 4). Correctly folded proteins destined for secretion are packaged in the ER into COPII-coated vesicles, which subsequently fuse to form the ERGIC. Secretion of certain abundant proteins suggests a default pathway requiring no export signals (bulk flow; refs. 6,7). An alternative mechanism involves selective packaging of secreted proteins with the help of specific cargo receptors. The latter model would be consistent with mutations in LMAN1 causing a selective block to export of factor V and factor VIII. But approximately 30% of individuals with F5F8D have normal levels of LMAN1, suggesting that mutations in another gene may also be associated with F5F8D. Here we show that inactivating mutations in MCFD2 cause F5F8D with a phenotype indistinguishable from that caused by mutations in LMAN1. MCFD2 is localized to the ERGIC through a direct, calcium-dependent interaction with LMAN1. These findings suggest that the MCFD2-LMAN1 complex forms a specific cargo receptor for the ER-to-Golgi transport of selected proteins.  相似文献   
4.
Susceptibility to Crohn's disease, a complex inflammatory disease, is influenced by common variants at many loci. The common exonic synonymous SNP (c.313C>T) in IRGM, found in strong linkage disequilibrium with a deletion polymorphism, has been classified as non-causative because of the absence of an alteration in the IRGM protein sequence or splice sites. Here we show that a family of microRNAs (miRNAs), miR-196, is overexpressed in the inflammatory intestinal epithelia of individuals with Crohn's disease and downregulates the IRGM protective variant (c.313C) but not the risk-associated allele (c.313T). Subsequent loss of tight regulation of IRGM expression compromises control of intracellular replication of Crohn's disease-associated adherent invasive Escherichia coli by autophagy. These results suggest that the association of IRGM with Crohn's disease arises from a miRNA-based alteration in IRGM regulation that affects the efficacy of autophagy, thereby implicating a synonymous polymorphism as a likely causal variant.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号