首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
现状及发展   7篇
研究方法   7篇
综合类   12篇
自然研究   1篇
  2019年   1篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1977年   1篇
  1972年   1篇
  1968年   2篇
  1955年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
Reduced adaptation of a non-recombining neo-Y chromosome   总被引:3,自引:0,他引:3  
Bachtrog D  Charlesworth B 《Nature》2002,416(6878):323-326
Sex chromosomes are generally believed to have descended from a pair of homologous autosomes. Suppression of recombination between the ancestral sex chromosomes led to the genetic degeneration of the Y chromosome. In response, the X chromosome may become dosage-compensated. Most proposed mechanisms for the degeneration of Y chromosomes involve the rapid fixation of deleterious mutations on the Y. Alternatively, Y-chromosome degeneration might be a response to a slower rate of adaptive evolution, caused by its lack of recombination. Here we report patterns of DNA polymorphism and divergence at four genes located on the neo-sex chromosomes of Drosophila miranda. We show that a higher rate of protein sequence evolution of the neo-X-linked copy of Cyclin B relative to the neo-Y copy is driven by positive selection, which is consistent with the adaptive hypothesis for the evolution of the Y chromosome. In contrast, the neo-Y-linked copies of even-skipped and roundabout show an elevated rate of protein evolution relative to their neo-X homologues, probably reflecting the reduced effectiveness of selection against deleterious mutations in a non-recombining genome. Our results provide evidence for the importance of sexual recombination for increasing and maintaining the level of adaptation of a population.  相似文献   
2.
Summary Adult loop-tail heterozygotes (Lp/+) from a stock ofLp-mice which consistently fail to show head wobbling exhibit normal brain morphology with respect to size and shape of lateral ventricles and nearby nuclei. Loop-tail heterozygotes from a head wobbling stock ofLp-mice show enlargement and deformity of the lateral ventricles.Supported by research grant HD09562 from the National Institutes of Health.  相似文献   
3.
The removal of apoptotic cells is essential for the physiological well being of the organism. In Caenorhabditis elegans, two conserved, partially redundant genetic pathways regulate this process. In the first pathway, the proteins CED-2, CED-5 and CED-12 (mammalian homologues CrkII, Dock180 and ELMO, respectively) function to activate CED-10 (Rac1). In the second group, the candidate receptor CED-1 (CD91/LRP/SREC) probably recognizes an unknown ligand on the apoptotic cell and signals via its cytoplasmic tail to the adaptor protein CED-6 (hCED-6/GULP), whereas CED-7 (ABCA1) is thought to play a role in membrane dynamics. Molecular understanding of how the second pathway promotes engulfment of the apoptotic cell is lacking. Here, we show that CED-1, CED-6 and CED-7 are required for actin reorganization around the apoptotic cell corpse, and that CED-1 and CED-6 colocalize with each other and with actin around the dead cell. Furthermore, we find that the CED-10(Rac) GTPase acts genetically downstream of these proteins to mediate corpse removal, functionally linking the two engulfment pathways and identifying the CED-1, -6 and -7 signalling module as upstream regulators of Rac activation.  相似文献   
4.
5.
6.
Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.  相似文献   
7.
8.
Bachtrog D 《Nature genetics》2004,36(5):518-522
Why does the Y chromosome harbor so few functional loci? Evolutionary theory predicts that Y chromosomes degenerate because they lack genetic recombination. Both positive and negative selection models have been invoked to explain this degeneration, as both can result in the recurrent fixation of linked deleterious mutations on a nonrecombining Y chromosome. To distinguish between these models, I investigated patterns of nucleotide variability along 37 kb of the recently formed neo-Y chromosome in Drosophila miranda. Levels of nucleotide variability on this chromosome are 30 times lower than in highly recombining portions of the genome. Both positive and negative selection models can result in reduced variability levels, but their effects on the frequency spectrum of mutations differ. Using coalescent simulations, I show that the patterns of nucleotide variability on the neo-Y chromosome are unlikely under deleterious mutation models (including background selection and Muller's ratchet) but are expected under recent positive selection. These results implicate positive selection as an important force driving the degeneration of Y chromosomes; adaptation at a few loci, possibly increasing male fitness, occurs at the cost of most other genes on this chromosome.  相似文献   
9.
10.
Elias LA  Wang DD  Kriegstein AR 《Nature》2007,448(7156):901-907
Radial glia, the neuronal stem cells of the embryonic cerebral cortex, reside deep within the developing brain and extend radial fibres to the pial surface, along which embryonic neurons migrate to reach the cortical plate. Here we show that the gap junction subunits connexin 26 (Cx26) and connexin 43 (Cx43) are expressed at the contact points between radial fibres and migrating neurons, and acute downregulation of Cx26 or Cx43 impairs the migration of neurons to the cortical plate. Unexpectedly, gap junctions do not mediate neuronal migration by acting in the classical manner to provide an aqueous channel for cell-cell communication. Instead, gap junctions provide dynamic adhesive contacts that interact with the internal cytoskeleton to enable leading process stabilization along radial fibres as well as the subsequent translocation of the nucleus. These results indicate that gap junction adhesions are necessary for glial-guided neuronal migration, raising the possibility that the adhesive properties of gap junctions may have an important role in other physiological processes and diseases associated with gap junction function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号