首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
现状及发展   4篇
研究方法   2篇
综合类   4篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2006年   1篇
  2005年   1篇
  2002年   3篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The use of comparative genomics to infer genome function relies on the understanding of how different components of the genome change over evolutionary time. The aim of such comparative analysis is to identify conserved, functionally transcribed sequences such as protein-coding genes and non-coding RNA genes, and other functional sequences such as regulatory regions, as well as other genomic features. Here, we have compared the entire human chromosome 21 with syntenic regions of the mouse genome, and have identified a large number of conserved blocks of unknown function. Although previous studies have made similar observations, it is unknown whether these conserved sequences are genes or not. Here we present an extensive experimental and computational analysis of human chromosome 21 in an effort to assign function to sequences conserved between human chromosome 21 (ref. 8) and the syntenic mouse regions. Our data support the presence of a large number of potentially functional non-genic sequences, probably regulatory and structural. The integration of the properties of the conserved components of human chromosome 21 to the rapidly accumulating functional data for this chromosome will improve considerably our understanding of the role of sequence conservation in mammalian genomes.  相似文献   
2.
Neuronal hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are known to modulate spontaneous activity, resting membrane potential, input resistance, afterpotential, rebound activity, and dendritic integration. To evaluate the role of HCN2 for hippocampal synaptic plasticity, we recorded long-term potentiation (LTP) in the direct perforant path (PP) to CA1 pyramidal cells. LTP was enhanced in mice carrying a global deletion of the channel (HCN2−/−) but not in a pyramidal neuron-restricted knockout. This precludes an influence of HCN2 located in postsynaptic pyramidal neurons. Additionally, the selective HCN blocker zatebradine reduced the activity of oriens-lacunosum moleculare interneurons in wild-type but not HCN2−/− mice and decreased the frequency of spontaneous inhibitory currents in postsynaptic CA1 pyramidal cells. Finally, we found amplified LTP in the PP of mice carrying an interneuron-specific deletion of HCN2. We conclude that HCN2 channels in inhibitory interneurons modulate synaptic plasticity in the PP by facilitating the GABAergic output onto pyramidal neurons.  相似文献   
3.
Localized to the vestibule of the nasal cavity, neurons of the Grueneberg ganglion (GG) respond to cool ambient temperatures. The molecular mechanisms underlying this thermal response are still elusive. Recently, it has been suggested that cool temperatures may activate a cyclic guanosine monophosphate (cGMP) pathway in the GG, which would be reminiscent of thermosensory neurons in Caenorhabditis elegans. In search for other elements of such a cascade, we have found that the cyclic nucleotide-gated ion channel CNGA3 was strongly expressed in the GG and that expression of CNGA3 was confined to those cells that are responsive to coolness. Further experiments revealed that the response of GG neurons to cool temperatures was significantly reduced in CNGA3-deficient mice compared to wild-type conspecifics. The observation that a cGMP-activated non-selective cation channel significantly contributes to the coolness-evoked response in GG neurons strongly suggests that a cGMP cascade is part of the transduction process.  相似文献   
4.
In the mammalian retina, light signals generated in photoreceptors are passed to bipolar and horizontal cells via synaptic contacts. In various pathological conditions, these second-order neurons extend neurites into the outer nuclear layer (ONL). However, the molecular events associated with this neurite outgrowth are not known. Here, we characterized the morphological synaptic changes in the CNGA3/CNGB1 double-knockout (A3B1) mouse, a model of retinitis pigmentosa. In these mice, horizontal cells looked normal until postnatal day (p) 11, but started growing neurites into the ONL 1 day later. At p28, the number of sprouting processes decreased, but the remaining sprouts developed synapse-like contacts at rod cell bodies, with an ultrastructural appearance reminiscent of ribbon synapses. Hence, neurite outgrowth and ectopic synaptogenesis in the A3B1 retina were precisely timed events starting at p12 and p28, respectively. We therefore performed microarray analysis of retinal gene expression in A3B1 and wild-type mice at those ages to evaluate the genomic response underlying these two events. This analysis identified 163 differentially regulated genes in the A3B1 retina related to neurite outgrowth or plasticity of synapses. The global changes in gene expression in the A3B1 retina were consistent with activation of signaling pathways related to Tp53, Smad, and Stat3. Moreover, key molecules of these signaling pathways could be localized at or in close proximity to outgrowing neurites. We therefore propose that Tp53, Smad, and Stat3 signaling pathways contribute to the synaptic plasticity in the A3B1 retina.  相似文献   
5.
6.
Initial sequencing and comparative analysis of the mouse genome   总被引:2,自引:0,他引:2  
The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.  相似文献   
7.
8.
Noncoding genetic variants are likely to influence human biology and disease, but recognizing functional noncoding variants is difficult. Approximately 3% of noncoding sequence is conserved among distantly related mammals, suggesting that these evolutionarily conserved noncoding regions (CNCs) are selectively constrained and contain functional variation. However, CNCs could also merely represent regions with lower local mutation rates. Here we address this issue and show that CNCs are selectively constrained in humans by analyzing HapMap genotype data. Specifically, new (derived) alleles of SNPs within CNCs are rarer than new alleles in nonconserved regions (P = 3 x 10(-18)), indicating that evolutionary pressure has suppressed CNC-derived allele frequencies. Intronic CNCs and CNCs near genes show greater allele frequency shifts, with magnitudes comparable to those for missense variants. Thus, conserved noncoding variants are more likely to be functional. Allele frequency distributions highlight selectively constrained genomic regions that should be intensively surveyed for functionally important variation.  相似文献   
9.
We performed exome sequencing to detect somatic mutations in protein-coding regions in seven melanoma cell lines and donor-matched germline cells. All melanoma samples had high numbers of somatic mutations, which showed the hallmark of UV-induced DNA repair. Such a hallmark was absent in tumor sample-specific mutations in two metastases derived from the same individual. Two melanomas with non-canonical BRAF mutations harbored gain-of-function MAP2K1 and MAP2K2 (MEK1 and MEK2, respectively) mutations, resulting in constitutive ERK phosphorylation and higher resistance to MEK inhibitors. Screening a larger cohort of individuals with melanoma revealed the presence of recurring somatic MAP2K1 and MAP2K2 mutations, which occurred at an overall frequency of 8%. Furthermore, missense and nonsense somatic mutations were frequently found in three candidate melanoma genes, FAT4, LRP1B and DSC1.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号