首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
理论与方法论   1篇
现状及发展   8篇
研究方法   2篇
综合类   10篇
  2015年   1篇
  2014年   2篇
  2012年   6篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   2篇
  1995年   2篇
  1987年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
The proteasome is a multi-catalytic protein complex whose primary function is the degradation of abnormal or foreign proteins. Upon exposure of cells to interferons (IFNs), the β1i/LMP2, β2i/MECL-1, and β5i/LMP7 subunits are induced and incorporated into newly synthesized immunoproteasomes (IP), which are thought to function solely as critical players in the optimization of the CD8(+) T-cell response. However, the observation that IP are present in several non-immune tissues under normal conditions and/or following pathological events militates against the view that its role is limited to MHC class I presentation. In support of this concept, the recent use of genetic models deficient for β1i/LMP2, β2i/MECL-1, or β5i/LMP7 has uncovered unanticipated functions for IP in innate immunity and non-immune processes. Herein, we review recent data in an attempt to clarify the role of IP beyond MHC class I epitope presentation with emphasis on its involvement in the regulation of protein homeostasis, cell proliferation, and cytokine gene expression.  相似文献   
2.
Ferbitz L  Maier T  Patzelt H  Bukau B  Deuerling E  Ban N 《Nature》2004,431(7008):590-596
During protein biosynthesis, nascent polypeptide chains that emerge from the ribosomal exit tunnel encounter ribosome-associated chaperones, which assist their folding to the native state. Here we present a 2.7 A crystal structure of Escherichia coli trigger factor, the best-characterized chaperone of this type, together with the structure of its ribosome-binding domain in complex with the Haloarcula marismortui large ribosomal subunit. Trigger factor adopts a unique conformation resembling a crouching dragon with separated domains forming the amino-terminal ribosome-binding 'tail', the peptidyl-prolyl isomerase 'head', the carboxy-terminal 'arms' and connecting regions building up the 'back'. From its attachment point on the ribosome, trigger factor projects the extended domains over the exit of the ribosomal tunnel, creating a protected folding space where nascent polypeptides may be shielded from proteases and aggregation. This study sheds new light on our understanding of co-translational protein folding, and suggests an unexpected mechanism of action for ribosome-associated chaperones.  相似文献   
3.
Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.  相似文献   
4.
The phytohormone auxin acts as a prominent signal, providing, by its local accumulation or depletion in selected cells, a spatial and temporal reference for changes in the developmental program. The distribution of auxin depends on both auxin metabolism (biosynthesis, conjugation and degradation) and cellular auxin transport. We identified in silico a novel putative auxin transport facilitator family, called PIN-LIKES (PILS). Here we illustrate that PILS proteins are required for auxin-dependent regulation of plant growth by determining the cellular sensitivity to auxin. PILS proteins regulate intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signalling. PILS activity affects the level of endogenous auxin indole-3-acetic acid (IAA), presumably via intracellular accumulation and metabolism. Our findings reveal that the transport machinery to compartmentalize auxin within the cell is of an unexpected molecular complexity and demonstrate this compartmentalization to be functionally important for a number of developmental processes.  相似文献   
5.
6.
The CCN family of proteins consists of six high homologous matricellular proteins which act predominantly by binding to heparin sulphate proteoglycan and a variety of integrins. Interestingly, CCN proteins are regulated by ovarian steroid hormones and are able to adapt to changes in oxygen concentration, which is a necessary condition for successful implantation. CCN1 is involved in processes of angiogenesis within reproductive systems, thereby potentially contributing to diseases such as endometriosis and disturbed angiogenesis in the placenta and fetus. In the ovary, CCN2 is the key factor for follicular development, ovulation and corpora luteal luteolysis, and its deletion leads to fertility defects. CCN1, CCN2 and CCN3 seem to be regulators for human trophoblast proliferation and migration, but with CCN2 acting as a counterweight. Alterations in the expression of these three proteins could contribute to the shallow invasion properties observed in preeclampsia. Little is known about the role of CCN4–6 in the reproductive organs. The ability of CCN1, CCN2 and CCN3 to interact with numerous receptors enables them to adapt their biological function rapidly to the continuous remodelling of the reproductive organs and in the development of the placenta. The CCN proteins mediate their specific cell physiological function through the receptor type of their binding partner followed by a defined signalling cascade. Because of their partly overlapping expression patterns, they could act in a concert synergistically or in an opposite way within the reproductive organs. Imbalances in their expression levels are correlated to different human reproductive diseases, such as endometriosis and preeclampsia.  相似文献   
7.
Extremely intense and ultrafast X-ray pulses from free-electron lasers offer unique opportunities to study fundamental aspects of complex transient phenomena in materials. Ultrafast time-resolved methods usually require highly synchronized pulses to initiate a transition and then probe it after a precisely defined time delay. In the X-ray regime, these methods are challenging because they require complex optical systems and diagnostics. Here we propose and apply a simple holographic measurement scheme, inspired by Newton's 'dusty mirror' experiment, to monitor the X-ray-induced explosion of microscopic objects. The sample is placed near an X-ray mirror; after the pulse traverses the sample, triggering the reaction, it is reflected back onto the sample by the mirror to probe this reaction. The delay is encoded in the resulting diffraction pattern to an accuracy of one femtosecond, and the structural change is holographically recorded with high resolution. We apply the technique to monitor the dynamics of polystyrene spheres in intense free-electron-laser pulses, and observe an explosion occurring well after the initial pulse. Our results support the notion that X-ray flash imaging can be used to achieve high resolution, beyond radiation damage limits for biological samples. With upcoming ultrafast X-ray sources we will be able to explore the three-dimensional dynamics of materials at the timescale of atomic motion.  相似文献   
8.
9.
10.
During translation, the first encounter of nascent polypeptides is with the ribosome-associated chaperones that assist the folding process--a principle that seems to be conserved in evolution. In Escherichia coli, the ribosome-bound Trigger Factor chaperones the folding of cytosolic proteins by interacting with nascent polypeptides. Here we identify a ribosome-binding motif in the amino-terminal domain of Trigger Factor. We also show the formation of crosslinked products between Trigger Factor and two adjacent ribosomal proteins, L23 and L29, which are located at the exit of the peptide tunnel in the ribosome. L23 is essential for the growth of E. coli and the association of Trigger Factor with the ribosome, whereas L29 is dispensable in both processes. Mutation of an exposed glutamate in L23 prevents Trigger Factor from interacting with ribosomes and nascent chains, and causes protein aggregation and conditional lethality in cells that lack the protein repair function of the DnaK chaperone. Purified L23 also interacts specifically with Trigger Factor in vitro. We conclude that essential L23 provides a chaperone docking site on ribosomes that directly links protein biosynthesis with chaperone-assisted protein folding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号