首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
理论与方法论   1篇
现状及发展   4篇
研究方法   6篇
综合类   12篇
  2012年   5篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2003年   2篇
  2002年   2篇
  1988年   1篇
  1987年   1篇
  1972年   1篇
  1970年   1篇
  1967年   1篇
  1966年   3篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Many important antibiotics such as tetracyclines, erythromycin, adriamycin, monensin, rifamycin and avermectins are polyketides. In their biosynthesis, multifunctional synthases catalyse iterated condensation of thio-esters derived from acetate, propionate or butyrate to yield aliphatic chains of varying length and carrying different alkyl substituents. Subsequent modifications, including aromatic or macrolide ring closure or specific methylations or glycosylations, generate further chemical diversity. It has been suggested that, if different polyketide synthases had a common evolutionary origin, cloned DNA coding for one synthase might be used as a hybridization probe for the isolation of others. We show here that this is indeed possible. Study of a range of such synthase genes and their products should help to elucidate what determines the choice and order of condensation of different residues in polyketide assembly, and might yield, by in vitro recombination or mutagenesis, synthase genes capable of producing novel antibiotics. Moreover, because genes for entire antibiotic pathways are usually clustered in Streptomyces, cloned polyketide synthase genes are valuable in giving access to groups of linked biosynthetic genes.  相似文献   
6.
7.
A therapeutic strategy for treating cancer is to target and eradicate cancer stem cells (CSCs) without harming their normal stem cell counterparts. The success of this approach relies on the identification of molecular pathways that selectively regulate CSC function. Using BCR-ABL-induced chronic myeloid leukemia (CML) as a disease model for CSCs, we show that BCR-ABL downregulates the Blk gene (encoding B-lymphoid kinase) through c-Myc in leukemic stem cells (LSCs) in CML mice and that Blk functions as a tumor suppressor in LSCs but does not affect normal hematopoietic stem cells (HSCs) or hematopoiesis. Blk suppresses LSC function through a pathway involving an upstream regulator, Pax5, and a downstream effector, p27. Inhibition of this Blk pathway accelerates CML development, whereas increased activity of the Blk pathway delays CML development. Blk also suppresses the proliferation of human CML stem cells. Our results show the feasibility of selectively targeting LSCs, an approach that should be applicable to other cancers.  相似文献   
8.
Zusammenfassung Elektronenoptischer Nachweis von Sensilla coeloconica beiAedes aegypti-«Weibchen» was beweist, dass nicht nur Culicinae, sondern auch Anophelinae Sinnesstrukturen besitzen.

Supported by Medical Research Council Grant No. MA 2909.  相似文献   
9.
Accumulation of amyloid fibrils in the viscera and connective tissues causes systemic amyloidosis, which is responsible for about one in a thousand deaths in developed countries. Localized amyloid can also have serious consequences; for example, cerebral amyloid angiopathy is an important cause of haemorrhagic stroke. The clinical presentations of amyloidosis are extremely diverse and the diagnosis is rarely made before significant organ damage is present. There is therefore a major unmet need for therapy that safely promotes the clearance of established amyloid deposits. Over 20 different amyloid fibril proteins are responsible for different forms of clinically significant amyloidosis and treatments that substantially reduce the abundance of the respective amyloid fibril precursor proteins can arrest amyloid accumulation. Unfortunately, control of fibril-protein production is not possible in some forms of amyloidosis and in others it is often slow and hazardous. There is no therapy that directly targets amyloid deposits for enhanced clearance. However, all amyloid deposits contain the normal, non-fibrillar plasma glycoprotein, serum amyloid P component (SAP). Here we show that administration of anti-human-SAP antibodies to mice with amyloid deposits containing human SAP triggers a potent, complement-dependent, macrophage-derived giant cell reaction that swiftly removes massive visceral amyloid deposits without adverse effects. Anti-SAP-antibody treatment is clinically feasible because circulating human SAP can be depleted in patients by the bis-d-proline compound CPHPC, thereby enabling injected anti-SAP antibodies to reach residual SAP in the amyloid deposits. The unprecedented capacity of this novel combined therapy to eliminate amyloid deposits should be applicable to all forms of systemic and local amyloidosis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号