首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
系统科学   1篇
综合类   1篇
  2013年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 593 毫秒
1
1.
Rauch EM  Bar-Yam Y 《Nature》2004,431(7007):449-452
Global efforts to conserve species have been strongly influenced by the heterogeneous distribution of species diversity across the Earth. This is manifest in conservation efforts focused on diversity hotspots. The conservation of genetic diversity within an individual species is an important factor in its survival in the face of environmental changes and disease. Here we show that diversity within species is also distributed unevenly. Using simple genealogical models, we show that genetic distinctiveness has a scale-free power law distribution. This property implies that a disproportionate fraction of the diversity is concentrated in small sub-populations, even when the population is well-mixed. Small groups are of such importance to overall population diversity that even without extrinsic perturbations, there are large fluctuations in diversity owing to extinctions of these small groups. We also show that diversity can be geographically non-uniform--potentially including sharp boundaries between distantly related organisms--without extrinsic causes such as barriers to gene flow or past migration events. We obtained these results by studying the fundamental scaling properties of genealogical trees. Our theoretical results agree with field data from global samples of Pseudomonas bacteria. Contrary to previous studies, our results imply that diversity loss owing to severe extinction events is high, and focusing conservation efforts on highly distinctive groups can save much of the diversity.  相似文献   
2.
Quantitative analysis is increasingly being used in team sports to better understand performance in these stylized, delineated, complex social systems. Here, the authors provide a first step toward understanding the pattern-forming dynamics that emerge from collective offensive and defensive behavior in team sports. The authors propose a novel method of analysis that captures how teams occupy sub-areas of the field as the ball changes location. The authors use this method to analyze a game of association football (soccer) based upon a hypothesis that local player numerical dominance is key to defensive stability and offensive opportunity. The authors find that the teams consistently allocated more players than their opponents in sub-areas of play closer to their own goal. This is consistent with a predominantly defensive strategy intended to prevent yielding even a single goal. The authors also find differences between the two teams’ strategies: while both adopted the same distribution of defensive, midfield, and attacking players (a 4: 3: 3 system of play), one team was significantly more effective in maintaining both defensive and offensive numerical dominance for defensive stability and offensive opportunity. That team indeed won the match with an advantage of one goal (2 to 1) but the analysis shows the advantage in play was more pervasive than the single goal victory would indicate. The proposed focus on the local dynamics of team collective behavior is distinct from the traditional focus on individual player capability. It supports a broader view in which specific player abilities contribute within the context of the dynamics of multiplayer team coordination and coaching strategy. By applying this complex system analysis to association football, the authors can understand how players’ and teams’ strategies result in successful and unsuccessful relationships between teammates and opponents in the area of play.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号