首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
现状及发展   2篇
研究方法   4篇
综合类   8篇
自然研究   1篇
  2020年   1篇
  2012年   2篇
  2011年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有15条查询结果,搜索用时 156 毫秒
1.
We have recently described two kindreds presenting thoracic aortic aneurysm and/or aortic dissection (TAAD) and patent ductus arteriosus (PDA) and mapped the disease locus to 16p12.2-p13.13 (ref. 3). We now demonstrate that the disease is caused by mutations in the MYH11 gene affecting the C-terminal coiled-coil region of the smooth muscle myosin heavy chain, a specific contractile protein of smooth muscle cells (SMC). All individuals bearing the heterozygous mutations, even if asymptomatic, showed marked aortic stiffness. Examination of pathological aortas showed large areas of medial degeneration with very low SMC content. Abnormal immunological recognition of SM-MHC and the colocalization of wild-type and mutant rod proteins in SMC, in conjunction with differences in their coimmunoprecipitation capacities, strongly suggest a dominant-negative effect. Human MYH11 gene mutations provide the first example of a direct change in a specific SMC protein leading to an inherited arterial disease.  相似文献   
2.
3.
Tournaire-Roux C  Sutka M  Javot H  Gout E  Gerbeau P  Luu DT  Bligny R  Maurel C 《Nature》2003,425(6956):393-397
Flooding of soils results in acute oxygen deprivation (anoxia) of plant roots during winter in temperate latitudes, or after irrigation, and is a major problem for agriculture. One early response of plants to anoxia and other environmental stresses is downregulation of water uptake due to inhibition of the water permeability (hydraulic conductivity) of roots (Lp(r)). Root water uptake is mediated largely by water channel proteins (aquaporins) of the plasma membrane intrinsic protein (PIP) subgroup. These aquaporins may mediate stress-induced inhibition of Lp(r) but the mechanisms involved are unknown. Here we delineate the whole-root and cell bases for inhibition of water uptake by anoxia and link them to cytosol acidosis. We also uncover a molecular mechanism for aquaporin gating by cytosolic pH. Because it is conserved in all PIPs, this mechanism provides a basis for explaining the inhibition of Lp(r) by anoxia and possibly other stresses. More generally, our work opens new routes to explore pH-dependent cell signalling processes leading to regulation of water transport in plant tissues or in animal epithelia.  相似文献   
4.
5.
Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-β signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy.  相似文献   
6.
Zusammenfassung Männliche und weibliche Kohlweisslinge,Pieris rapae L., zeigen unterschiedliche optomotorische Reaktionen zu einer bewegten Schwarz-weiss-Kante. Es wird angenommen, dass dies auf unterschiedlicher neuraler Integration im Zentralnervensystem der beiden Geschlechter beruht und dass die spezifische optomotorische Reaktion des Männchens bei seinem visuell orientierten Geschlechtsverhalten von Bedeutung ist.  相似文献   
7.
8.
Experimental infection with mouse cytomegalovirus (MCMV) has been used to elucidate the intricate host-pathogen mechanisms that determine innate resistance to infection. Linkage analyses in F(2) progeny from MCMV-resistant MA/My (H2 (k)) and MCMV-susceptible BALB/c (H2 (d)) and BALB.K (H2 (k)) mouse strains indicated that only the combination of alleles encoded by a gene in the Klra (also called Ly49) cluster on chromosome 6, and one in the major histocompatibility complex (H2) on chromosome 17, is associated with virus resistance. We found that natural killer cell-activating receptor Ly49P specifically recognized MCMV-infected cells, dependent on the presence of the H2 (k) haplotype. This binding was blocked using antibodies to H-2D(k) but not antibodies to H-2K(k). These results are suggestive of a new natural killer cell mechanism implicated in MCMV resistance, which depends on the functional interaction of the Ly49P receptor and the major histocompatibility complex class I molecule H-2D(k) on MCMV-infected cells.  相似文献   
9.
In wound healing and development, large epithelial sheets migrate collectively, in defined directions, and maintain tight cell-cell adhesion. This type of movement ensures an essential function of epithelia, a barrier, which is lost when cells lose connection and move in isolation. Unless wounded, epithelial sheets in cultures normally do not have overall directional migration. Cell migration is mostly studied when cells are in isolation and in the absence of mature cell-cell adhesion; the mechanisms of the migration of epithelial sheets are less well understood. We used small electric fields (EFs) as a directional cue to instigate and guide migration of epithelial sheets. Significantly, cells in monolayer migrated far more efficiently and directionally than cells in isolation or smaller cell clusters. We demonstrated for the first time the group size-dependent directional migratory response in several types of epithelial cells. Gap junctions made a minimal contribution to the directional collective migration. Breaking down calcium-dependent cell-cell adhesion significantly reduced directional sheet migration. Furthermore, E-cadherin blocking antibodies abolished migration of cell sheets. Traction force analysis revealed an important role of forces that cells in the leading rows exert on the substratum. With EF, the traction forces of the leading edge cells coordinated in directional re-orientation. Our study thus identifies a novel mechanism--E-cadherin dependence and coordinated traction forces of leading cells in collective directional migration of large epithelial sheets.  相似文献   
10.
Physiogenomic resources for rat models of heart, lung and blood disorders   总被引:6,自引:0,他引:6  
Cardiovascular disorders are influenced by genetic and environmental factors. The TIGR rodent expression web-based resource (TREX) contains over 2,200 microarray hybridizations, involving over 800 animals from 18 different rat strains. These strains comprise genetically diverse parental animals and a panel of chromosomal substitution strains derived by introgressing individual chromosomes from normotensive Brown Norway (BN/NHsdMcwi) rats into the background of Dahl salt sensitive (SS/JrHsdMcwi) rats. The profiles document gene-expression changes in both genders, four tissues (heart, lung, liver, kidney) and two environmental conditions (normoxia, hypoxia). This translates into almost 400 high-quality direct comparisons (not including replicates) and over 100,000 pairwise comparisons. As each individual chromosomal substitution strain represents on average less than a 5% change from the parental genome, consomic strains provide a useful mechanism to dissect complex traits and identify causative genes. We performed a variety of data-mining manipulations on the profiles and used complementary physiological data from the PhysGen resource to demonstrate how TREX can be used by the cardiovascular community for hypothesis generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号