首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2012年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
Solutions for a cultivated planet   总被引:61,自引:0,他引:61  
Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world's future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture's environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing 'yield gaps' on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.  相似文献   
2.
Zaks B  Liu RB  Sherwin MS 《Nature》2012,483(7391):580-583
An intense laser field can remove an electron from an atom or molecule and pull the electron into a large-amplitude oscillation in which it repeatedly collides with the charged core it left behind. Such recollisions result in the emission of very energetic photons by means of high-order-harmonic generation, which has been observed in atomic and molecular gases as well as in a bulk crystal. An exciton is an atom-like excitation of a solid in which an electron that is excited from the valence band is bound by the Coulomb interaction to the hole it left behind. It has been predicted that recollisions between electrons and holes in excitons will result in a new phenomenon: high-order-sideband generation. In this process, excitons are created by a weak near-infrared laser of frequency f(NIR). An intense laser field at a much lower frequency, f(THz), then removes the electron from the exciton and causes it to recollide with the resulting hole. New emission is predicted to occur as sidebands of frequency f(NIR)?+?2nf(THz), where n is an integer that can be much greater than one. Here we report the observation of high-order-sideband generation in semiconductor quantum wells. Sidebands are observed up to eighteenth order (+18f(THz), or n = 9). The intensity of the high-order sidebands decays only weakly with increasing sideband order, confirming the non-perturbative nature of the effect. Sidebands are strongest for linearly polarized terahertz radiation and vanish when the terahertz radiation is circularly polarized. Beyond their fundamental scientific significance, our results suggest a new mechanism for the ultrafast modulation of light, which has potential applications in terabit-rate optical communications.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号