首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2011年   1篇
  1984年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
S Ohno  Y Emori  S Imajoh  H Kawasaki  M Kisaragi  K Suzuki 《Nature》1984,312(5994):566-570
Calcium-dependent protease (calcium protease) is apparently involved in a variety of cellular processes. Here we have attempted to clarify the role and regulatory mechanism of calcium protease by analysing its structure. The complete primary structure of calcium protease (relative molecular mass (Mr) 80,000 (80K), 705 amino acids) was deduced from the nucleotide sequence of cloned complementary DNA. The protein contains four distinct domains, and we have observed a marked similarity between the second and fourth domains and the papain-like thiol proteases and calmodulin-like calcium-binding proteins, respectively. This finding suggests that calcium protease arose from the fusion of genes for proteins of completely different function and evolutionary origin. Further, it provides functional insight into cellular regulatory mechanisms mediated by Ca2+ through calcium-binding proteins.  相似文献   
2.
Numerical simulation of injection of polyethylene fluid in a variable cross-section nano-channel was carried out using the molecular dynamics method.The effects of the nano-channel cross-section and the external force on the rheological behavior and structural properties of the polyethylene fluid were investigated.It was found that an absorbed layer appeared near the wall and the thickness of the absorbed layer increased with increasing cone angle of the nano-channel.The injection distance of the polyethylene fluid decreased with increasing cone angle and decreasing external force.In the nano-channel with cone angle 45°,polyethylene particles uniformly filled the whole channel and were stretched along the flow direction.Uniaxial stretching of particles was enhanced when the external force was strengthened,which facilitates injection of the polyethylene fluid into the nano-channel.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号