首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
研究方法   2篇
综合类   1篇
  2008年   1篇
  2006年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 156 毫秒
1
1.
Dishevelled controls cell polarity during Xenopus gastrulation   总被引:11,自引:0,他引:11  
Although cell movements are vital for establishing the normal architecture of embryos, it is unclear how these movements are regulated during development in vertebrates. Inhibition of Xenopus Dishevelled (Xdsh) function disrupts convergent extension movements of cells during gastrulation, but the mechanism of this effect is unclear, as cell fates are not affected. In Drosophila, Dishevelled controls both cell fate and cell polarity, but whether Dishevelled is involved in controlling cell polarity in vertebrate embryos has not been investigated. Here we show, using time-lapse confocal microscopy, that the failure of cells lacking Xdsh function to undergo convergent extension results from defects in cell polarity. Furthermore, Xdsh mutations that inhibit convergent extension correspond to mutations in Drosophila Dishevelled that selectively perturb planar cell polarity. Finally, the localization of Xdsh at the membrane of normal dorsal mesodermal cells is consistent with Xdsh controlling cell polarity. Our results show that polarized cell behaviour is essential for convergent extension and is controlled by vertebrate Dishevelled. Thus, a vertebrate equivalent of the Drosophila planar cell polarity signalling cascade may be required for normal gastrulation.  相似文献   
2.
The planar cell polarity (PCP) signaling system governs many aspects of polarized cell behavior. Here, we use an in vivo model of vertebrate mucociliary epithelial development to show that Dishevelled (Dvl) is essential for the apical positioning of basal bodies. We find that Dvl and Inturned mediate the activation of the Rho GTPase specifically at basal bodies, and that these three proteins together mediate the docking of basal bodies to the apical plasma membrane. Moreover, we find that this docking involves a Dvl-dependent association of basal bodies with membrane-bound vesicles and the vesicle-trafficking protein, Sec8. Once docked, basal bodies again require Dvl and Rho for the planar polarization that underlies directional beating of cilia. These results demonstrate previously undescribed functions for PCP signaling components and suggest that a common signaling apparatus governs both apical docking and planar polarization of basal bodies.  相似文献   
3.
The vertebrate planar cell polarity (PCP) pathway has previously been found to control polarized cell behaviors rather than cell fate. We report here that disruption of Xenopus laevis orthologs of the Drosophila melanogaster PCP effectors inturned (in) or fuzzy (fy) affected not only PCP-dependent convergent extension but also elicited embryonic phenotypes consistent with defective Hedgehog signaling. These defects in Hedgehog signaling resulted from a broad requirement for Inturned and Fuzzy in ciliogenesis. We show that these proteins govern apical actin assembly and thus control the orientation, but not assembly, of ciliary microtubules. Finally, accumulation of Dishevelled and Inturned near the basal apparatus of cilia suggests that these proteins function in a common pathway with core PCP components to regulate ciliogenesis. Together, these data highlight the interrelationships between cell polarity, cellular morphogenesis, signal transduction and cell fate specification.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号