首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   4篇
  2006年   1篇
  2000年   1篇
  1999年   1篇
  1985年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Toll-like receptors in the induction of the innate immune response   总被引:134,自引:0,他引:134  
Aderem A  Ulevitch RJ 《Nature》2000,406(6797):782-787
The innate immune response is the first line of defence against infectious disease. The principal challenge for the host is to detect the pathogen and mount a rapid defensive response. A group of proteins that comprise the Toll or Toll-like family of receptors perform this role in vertebrate and invertebrate organisms. This reflects a remarkable conservation of function and it is therefore not surprising that studies of the mechanism by which they act has revealed new and important insights into host defence.  相似文献   
2.
Caspases function in both apoptosis and inflammatory cytokine processing and thereby have a role in resistance to sepsis. Here we describe a novel role for a caspase in dampening responses to bacterial infection. We show that in mice, gene-targeted deletion of caspase-12 renders animals resistant to peritonitis and septic shock. The resulting survival advantage was conferred by the ability of the caspase-12-deficient mice to clear bacterial infection more efficiently than wild-type littermates. Caspase-12 dampened the production of the pro-inflammatory cytokines interleukin (IL)-1beta, IL-18 (interferon (IFN)-gamma inducing factor) and IFN-gamma, but not tumour-necrosis factor-alpha and IL-6, in response to various bacterial components that stimulate Toll-like receptor and NOD pathways. The IFN-gamma pathway was crucial in mediating survival of septic caspase-12-deficient mice, because administration of neutralizing antibodies to IFN-gamma receptors ablated the survival advantage that otherwise occurred in these animals. Mechanistically, caspase-12 associated with caspase-1 and inhibited its activity. Notably, the protease function of caspase-12 was not necessary for this effect, as the catalytically inactive caspase-12 mutant Cys299Ala also inhibited caspase-1 and IL-1beta production to the same extent as wild-type caspase-12. In this regard, caspase-12 seems to be the cFLIP counterpart for regulating the inflammatory branch of the caspase cascade. In mice, caspase-12 deficiency confers resistance to sepsis and its presence exerts a dominant-negative suppressive effect on caspase-1, resulting in enhanced vulnerability to bacterial infection and septic mortality.  相似文献   
3.
Toll gates for pathogen selection.   总被引:3,自引:0,他引:3  
R J Ulevitch 《Nature》1999,401(6755):755-756
  相似文献   
4.
In mammals, several well-defined metabolic changes occur during infection, many of which are attributable to products of the reticuloendothelial system. Among these changes, a hypertriglyceridaemic state is frequently evident, resulting from defective triglyceride clearance, caused by systemic suppression of the enzyme lipoprotein lipase (LPL). We have found previously that macrophages secrete the hormone cachectin, which specifically suppresses LPL activity in cultured adipocytes (3T3-L1 cells). When originally purified from RAW 264.7 (mouse macrophage) cells, cachectin was shown to have a pI of 4.7, a subunit size of relative molecular mass (Mr) 17,000 and to form non-covalent multimers. A receptor for cachectin was identified on non-tumorigenic cultured cells and on normal mouse liver membranes. A new high-yield purification technique has enabled us to determine further details of the structure of mouse cachectin. We now report that a high degree of homology exists between the N-terminal sequence of mouse cachectin and the N-terminal sequence recently determined for human tumour necrosis factor (TNF). Purified cachectin also possesses potent TNF activity in vitro. These findings suggest that the 'cachectin' and 'TNF' activities of murine macrophage conditioned medium are attributable to a single protein, which modulates the metabolic activities of normal as well as neoplastic cells through interaction with specific high-affinity receptors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号