首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
研究方法   1篇
综合类   4篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1968年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Evidence of infection with influenza viruses in migratory waterfowl   总被引:1,自引:0,他引:1  
  相似文献   
2.
Bivalve molluscs, the primary vectors of paralytic shellfish poisoning (PSP) in humans, show marked inter-species variation in their capacity to accumulate PSP toxins (PSTs) which has a neural basis. PSTs cause human fatalities by blocking sodium conductance in nerve fibres. Here we identify a molecular basis for inter-population variation in PSP resistance within a species, consistent with genetic adaptation to PSTs. Softshell clams (Mya arenaria) from areas exposed to 'red tides' are more resistant to PSTs, as demonstrated by whole-nerve assays, and accumulate toxins at greater rates than sensitive clams from unexposed areas. PSTs lead to selective mortality of sensitive clams. Resistance is caused by natural mutation of a single amino acid residue, which causes a 1,000-fold decrease in affinity at the saxitoxin-binding site in the sodium channel pore of resistant, but not sensitive, clams. Thus PSTs might act as potent natural selection agents, leading to greater toxin resistance in clam populations and increased risk of PSP in humans. Furthermore, global expansion of PSP to previously unaffected coastal areas might result in long-term changes to communities and ecosystems.  相似文献   
3.
Natural variation in light sensitivity of Arabidopsis.   总被引:10,自引:0,他引:10  
Because plants depend on light for growth, their development and physiology must suit the particular light environment. Plants native to different environments show heritable, apparently adaptive, changes in their response to light. As a first step in unraveling the genetic and molecular basis of these naturally occurring differences, we have characterized intraspecific variation in a light-dependent developmental process-seedling emergence. We examined 141 Arabidopsis thaliana accessions for their response to four light conditions, two hormone conditions and darkness. There was significant variation in all conditions, confirming that Arabidopsis is a rich source of natural genetic diversity. Hierarchical clustering revealed that some accessions had response patterns similar to known photoreceptor mutants, suggesting changes in specific signaling pathways. We found that the unusual far-red response of the Lm-2 accession is due to a single amino-acid change in the phytochrome A (PHYA) protein. This change stabilizes the light-labile PHYA protein in light and causes a 100-fold shift in the threshold for far-red light sensitivity. Purified recombinant Lm-2 PHYA also shows subtle photochemical differences and has a reduced capacity for autophosphorylation. These biochemical changes contrast with previously characterized natural alleles in loci controlling plant development, which result in altered gene expression or loss of gene function.  相似文献   
4.
Trainer VL 《Nature》2002,418(6901):925-926
  相似文献   
5.
Over 400 California sea lions (Zalophus californianus) died and many others displayed signs of neurological dysfunction along the central California coast during May and June 1998. A bloom of Pseudo-nitzschia australis (diatom) was observed in the Monterey Bay region during the same period. This bloom was associated with production of domoic acid (DA), a neurotoxin that was also detected in planktivorous fish, including the northern anchovy (Engraulis mordax), and in sea lion body fluids. These and other concurrent observations demonstrate the trophic transfer of DA resulting in marine mammal mortality. In contrast to fish, blue mussels (Mytilus edulus) collected during the DA outbreak contained no DA or only trace amounts. Such findings reveal that monitoring of mussel toxicity alone does not necessarily provide adequate warning of DA entering the food web at levels sufficient to harm marine wildlife and perhaps humans.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号