首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2005年   1篇
  2001年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The exact processes by which interstellar matter condenses to form young stars are of great interest, in part because they bear on the formation of planets like our own from the material that fails to become part of the star. Theoretical models suggest that ejection of gas during early phases of stellar evolution is a key mechanism for removing excess angular momentum, thereby allowing material to drift inwards towards the star through an accretion disk. Such ejections also limit the mass that can be accumulated by the stellar core. To date, these ejections have been observed to be bipolar and highly collimated, in agreement with theory. Here we report observations at very high angular resolution of the proper motions of an arc of water-vapour masers near a very young, massive star in Cepheus. We find that the arc of masers can be fitted to a circle with an accuracy of one part in a thousand, and that the structure is expanding. Only a sphere will always produce a circle in projection, so our observations strongly suggest that the perfectly spherical ejection of material from this star took place about 33 years earlier. The spherical symmetry of the ejecta and its episodic nature are very surprising in the light of present theories.  相似文献   
2.
L F Miranda  Y Gómez  G Anglada  J M Torrelles 《Nature》2001,414(6861):284-286
A star like the Sun becomes a planetary nebula towards the end of its life, when the envelope ejected during the earlier giant phase becomes photoionized as the surface of the remnant star reaches a temperature of approximately 30,000 K. The spherical symmetry of the giant phase is lost in the transition to a planetary nebula, when non-spherical shells and powerful jets develop. Molecules that were present in the giant envelope are progressively destroyed by the radiation. The water-vapour masers that are typical of the giant envelopes therefore are not expected to persist in planetary nebulae. Here we report the detection of water-maser emission from the planetary nebula K3-35. The masers are in a magnetized torus with a radius of about 85 astronomical units and are also found at the surprisingly large distance of about 5,000 astronomical units from the star, in the tips of bipolar lobes of gas. The precessing jets from K3-35 are probably involved in the excitation of the distant masers, although their existence is nevertheless puzzling. We infer that K3-35 is being observed at the very moment of its transformation from a giant star to a planetary nebula.  相似文献   
3.
The processes leading to the birth of low-mass stars such as our Sun have been well studied, but the formation of high-mass (over eight times the Sun's mass, M(o)) stars remains poorly understood. Recent studies suggest that high-mass stars may form through accretion of material from a circumstellar disk, in essentially the same way as low-mass stars form, rather than through the merging of several low-mass stars. There is as yet, however, no conclusive evidence. Here we report the presence of a flattened disk-like structure around a massive 15M(o) protostar in the Cepheus A region, based on observations of continuum emission from the dust and line emission from the molecular gas. The disk has a radius of about 330 astronomical units (Au) and a mass of 1 to 8 M(o). It is oriented perpendicular to, and spatially coincident with, the central embedded powerful bipolar radio jet, just as is the case with low-mass stars, from which we conclude that high-mass stars can form through accretion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号