首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
现状及发展   5篇
研究方法   3篇
综合类   26篇
自然研究   2篇
  2016年   1篇
  2011年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
Fryxell JM  Mosser A  Sinclair AR  Packer C 《Nature》2007,449(7165):1041-1043
Theoretical ecology is largely founded on the principle of mass action, in which uncoordinated populations of predators and prey move in a random and well-mixed fashion across a featureless landscape. The conceptual core of this body of theory is the functional response, predicting the rate of prey consumption by individual predators as a function of predator and/or prey densities. This assumption is seriously violated in many ecosystems in which predators and/or prey form social groups. Here we develop a new set of group-dependent functional responses to consider the ecological implications of sociality and apply the model to the Serengeti ecosystem. All of the prey species typically captured by Serengeti lions (Panthera leo) are gregarious, exhibiting nonlinear relationships between prey-group density and population density. The observed patterns of group formation profoundly reduce food intake rates below the levels expected under random mixing, having as strong an impact on intake rates as the seasonal migratory behaviour of the herbivores. A dynamical system model parameterized for the Serengeti ecosystem (using wildebeest (Connochaetes taurinus) as a well-studied example) shows that grouping strongly stabilizes interactions between lions and wildebeest. Our results suggest that social groups rather than individuals are the basic building blocks around which predator-prey interactions should be modelled and that group formation may provide the underlying stability of many ecosystems.  相似文献   
2.
Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.  相似文献   
3.
The molecular mechanisms of aging are most fully understood for the budding yeast Saccharomyces cerevisiae. Recent advances in our understanding of aging in this organism have enabled researchers to answer some fundamental questions about the aging process. Is aging due to a multitude of 'mechanisms' or can there be a key few? Can we design single-gene mutations that will prolong life? Can we prolong life whilst maintaining health and fecundity? The various contributing factors to yeast longevity, uncovered thus far, fall into three classes: DNA metabolism, heterochromatin, and metabolic activity. However, these separate classes may actually represent different aspects of the same aging mechanism based on genome stability. This review examines the recent advances in our understanding of yeast aging and discusses their relevance, if any, to the human condition.  相似文献   
4.
Sinclair A 《Nature》2003,426(6968):774-775
  相似文献   
5.
6.
The offspring of rats that voluntarily select larger quantities of alcohol are heavier consumers of alcohol than the offspring of rats that tend to avoid it. Such selective breeding, repeated over many generations, was used to develop the AA (Alko, Alcohol) line of rats which prefer 10% alcohol to water, and the ANA (Alko, Non-Alcohol) line of rats which choose water to the virtual exclusion of alcohol. In addition to demonstrating the likely role of genetic factors in alcohol consumption, these lines have been used to find behavioral, metabolic, and neurochemical correlates of differential alcohol intake. Some of the line differences that have been found involve the reinforcing effects of ethanol, the changes in consumption produced by alcohol deprivation and nutritional factors, the behavioral and adrenal monoamine reactions to mild stress, the development of tolerance, the accumulation of acetaldehyde during ethanol metabolism, and the brain levels of serotonin. It is hoped that these studies will lead to a better understanding of the genetically-determined mechanisms that influence the selection of alcohol.  相似文献   
7.
Cellular and Molecular Life Sciences - Oxygen uptake by neutrophils has been stimulated by particulate serum-treated-zymosan (STZ) and soluble N-formylmethionyl-leucyl-phenylalanine (FMLP) in the...  相似文献   
8.
Morphine-induced suppression of voluntary alcohol drinking in rats   总被引:2,自引:0,他引:2  
J D Sinclair  J Adkins  S Walker 《Nature》1973,246(5433):425-427
  相似文献   
9.
Sirtuin activators mimic caloric restriction and delay ageing in metazoans   总被引:1,自引:0,他引:1  
Wood JG  Rogina B  Lavu S  Howitz K  Helfand SL  Tatar M  Sinclair D 《Nature》2004,430(7000):686-689
Caloric restriction extends lifespan in numerous species. In the budding yeast Saccharomyces cerevisiae this effect requires Sir2 (ref. 1), a member of the sirtuin family of NAD+-dependent deacetylases. Sirtuin activating compounds (STACs) can promote the survival of human cells and extend the replicative lifespan of yeast. Here we show that resveratrol and other STACs activate sirtuins from Caenorhabditis elegans and Drosophila melanogaster, and extend the lifespan of these animals without reducing fecundity. Lifespan extension is dependent on functional Sir2, and is not observed when nutrients are restricted. Together these data indicate that STACs slow metazoan ageing by mechanisms that may be related to caloric restriction.  相似文献   
10.
Summary The offspring of rats that voluntarily select larger quantities of alcohol are heavier consumers of alcohol than the offspring of rats that tend to avoid it. Such selective breeding, repeated over many generations, was used to develop the AA (Alko, Alcohol) line of rats which prefer 10% alcohol to water, and the ANA (Alko, Non-Alcohol) line of rats which choose water to the virtual exclusion of alcohol. In addition to demonstrating the likely role of genetic factors in alcohol consumption, these lines have been used to find behavioral, metabolic, and neurochemical correlates of differential alcohol intake. Some of the line differences that have been found involve the reinforcing effects of ethanol, the changes in consumption produced by alcohol deprivation and nutritional factors, the behavioral and adrenal monoamine reactions to mild stress, the development of tolerance, the accumulation of acetaldehyde during ethanol metabolism, and the brain levels of serotonin. It is hoped that these studies will lead to a better understanding of the genetically-determined mechanisms that influence the selection of alcohol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号