首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
现状及发展   1篇
综合类   5篇
  2007年   2篇
  2000年   1篇
  1987年   1篇
  1986年   1篇
  1967年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Parallel processing of motion and colour information   总被引:1,自引:0,他引:1  
T Carney  M Shadlen  E Switkes 《Nature》1987,328(6131):647-649
When the two eyes are confronted with sufficiently different versions of the visual environment, one or the other eye dominates perception in alternation. A similar situation may be created in the laboratory by presenting images to the left and right eyes which differ in orientation or colour. Although perception is dominated by one eye during rivalry, there are a number of instances in which visual processes nevertheless continue to integrate information from the suppressed eye. For example the interocular transfer of the motion after-effect is undiminished when induced during binocular rivalry. Thus motion information processing may occur in parallel with the rivalry process. Here we describe a novel example in which the visual system simultaneously exhibits binocular rivalry and vision that integrates signals from both eyes. This apparent contradiction is resolved by postulating parallel visual processes devoted to the analyses of colour and motion information. Counterphased gratings are viewed dichoptically such that for one eye the grating is composed of alternating yellow and black stripes (luminance) while for the other it is composed of alternating red and green stripes (chrominance). When the gratings are fused, a moving grating is perceived. A consistent direction of motion can only be achieved if left and right monocular signals are integrated by the nervous system. Yet the apparent colour of the binocular percept alternates between red-green and yellow-black. These observations demonstrate the segregation of processing by the early motion system from that affording the perception of colour. Although, in this stimulus, colour information in itself can play no part in the cyclopean perception of motion direction, colour is carried along perceptually (filled in) by the moving pattern which is integrated from both eyes.  相似文献   
3.
A S Ramoa  M Shadlen  B C Skottun  R D Freeman 《Nature》1986,321(6067):237-239
Neurones in the visual cortex are highly selective for orientation and spatial frequency of visual stimuli. There is strong neurophysiological evidence that orientation selectivity is enhanced by inhibitory interconnections between columns in the cortex which have different orientation sensitivities, an idea which is supported by experiments using neuropharmacological manipulation or complex visual stimuli. It has also been proposed that selectivity for spatial frequency is mediated in part by a similar mechanism to that for orientation, although evidence for this is based on special use of visual stimuli, which hampers interpretation of the findings. We have therefore examined selectivity for both orientation and spatial frequency using a technique which allows direct inferences about inhibitory processes. Our method uses microiontophoresis of an excitatory amino acid to elevate maintained discharge of single neurones in the visual cortex. We then present visual stimuli both within and outside the range of orientations and spatial frequencies which cause a cell to respond with increased discharge. Our results show that orientations presented on either side of the responsive range usually produce clear suppression of maintained discharge. In marked contrast, spatial frequencies shown to either side of the responsive range have little or no effect on maintained activity. We conclude that there is an intracortical organization of inhibitory connections between cells tuned to different orientations but not different spatial frequencies.  相似文献   
4.
Probabilistic reasoning by neurons   总被引:1,自引:0,他引:1  
Yang T  Shadlen MN 《Nature》2007,447(7148):1075-1080
Our brains allow us to reason about alternatives and to make choices that are likely to pay off. Often there is no one correct answer, but instead one that is favoured simply because it is more likely to lead to reward. A variety of probabilistic classification tasks probe the covert strategies that humans use to decide among alternatives based on evidence that bears only probabilistically on outcome. Here we show that rhesus monkeys can also achieve such reasoning. We have trained two monkeys to choose between a pair of coloured targets after viewing four shapes, shown sequentially, that governed the probability that one of the targets would furnish reward. Monkeys learned to combine probabilistic information from the shape combinations. Moreover, neurons in the parietal cortex reveal the addition and subtraction of probabilistic quantities that underlie decision-making on this task.  相似文献   
5.
Shadlen MN  Kiani R 《Nature》2007,448(7153):539-540
  相似文献   
6.
Representation of a perceptual decision in developing oculomotor commands   总被引:15,自引:0,他引:15  
Gold JI  Shadlen MN 《Nature》2000,404(6776):390-394
Behaviour often depends on the ability to make categorical judgements about sensory information acquired over time. Such judgements require a comparison of the evidence favouring the alternatives, but how the brain forms these comparisons is unknown. Here we show that in a visual discrimination task, the accumulating balance of sensory evidence favouring one interpretation over another is evident in the neural circuits that generate the behavioural response. We trained monkeys to make a direction judgement about dynamic random-dot motions and to indicate their judgement with an eye movement to a visual target. We interrupted motion viewing with electrical microstimulation of the frontal eye field and analysed the resulting, evoked eye movements for evidence of ongoing activity associated with the oculomotor response. Evoked eye movements deviated in the direction of the monkey's judgement. The magnitude of the deviation depended on motion strength and viewing time. The oculomotor signals responsible for these deviations reflected the accumulated motion information that informed the monkey's choices on the discrimination task. Thus, for this task, decision formation and motor preparation appear to share a common level of neural organization.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号