首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
现状及发展   1篇
综合类   11篇
  2018年   1篇
  2011年   1篇
  2008年   4篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1971年   1篇
排序方式: 共有12条查询结果,搜索用时 272 毫秒
1.
Froemke RC  Merzenich MM  Schreiner CE 《Nature》2007,450(7168):425-429
Receptive fields of sensory cortical neurons are plastic, changing in response to alterations of neural activity or sensory experience. In this way, cortical representations of the sensory environment can incorporate new information about the world, depending on the relevance or value of particular stimuli. Neuromodulation is required for cortical plasticity, but it is uncertain how subcortical neuromodulatory systems, such as the cholinergic nucleus basalis, interact with and refine cortical circuits. Here we determine the dynamics of synaptic receptive field plasticity in the adult primary auditory cortex (also known as AI) using in vivo whole-cell recording. Pairing sensory stimulation with nucleus basalis activation shifted the preferred stimuli of cortical neurons by inducing a rapid reduction of synaptic inhibition within seconds, which was followed by a large increase in excitation, both specific to the paired stimulus. Although nucleus basalis was stimulated only for a few minutes, reorganization of synaptic tuning curves progressed for hours thereafter: inhibition slowly increased in an activity-dependent manner to rebalance the persistent enhancement of excitation, leading to a retuned receptive field with new preference for the paired stimulus. This restricted period of disinhibition may be a fundamental mechanism for receptive field plasticity, and could serve as a memory trace for stimuli or episodes that have acquired new behavioural significance.  相似文献   
2.
Steric effects in chemistry are a consequence of the space required to accommodate the atoms and groups within a molecule, and are often thought to be dominated by repulsive forces arising from overlapping electron densities (Pauli repulsion). An appreciation of attractive interactions such as van der Waals forces (which include London dispersion forces) is necessary to understand chemical bonding and reactivity fully. This is evident from, for example, the strongly debated origin of the higher stability of branched alkanes relative to linear alkanes and the possibility of constructing hydrocarbons with extraordinarily long C-C single bonds through steric crowding. Although empirical bond distance/bond strength relationships have been established for C-C bonds (longer C-C bonds have smaller bond dissociation energies), these have no present theoretical basis. Nevertheless, these empirical considerations are fundamental to structural and energetic evaluations in chemistry, as summarized by Pauling as early as 1960 and confirmed more recently. Here we report the preparation of hydrocarbons with extremely long C-C bonds (up to 1.704??), the longest such bonds observed so far in alkanes. The prepared compounds are unexpectedly stable--noticeable decomposition occurs only above 200?°C. We prepared the alkanes by coupling nanometre-sized, diamond-like, highly rigid structures known as diamondoids. The extraordinary stability of the coupling products is due to overall attractive dispersion interactions between the intramolecular H???H contact surfaces, as is evident from density functional theory computations with and without inclusion of dispersion corrections.  相似文献   
3.
Zeng X  Goetz JA  Suber LM  Scott WJ  Schreiner CM  Robbins DJ 《Nature》2001,411(6838):716-720
The secreted protein Sonic hedgehog (Shh) exerts many of its patterning effects through a combination of short- and long-range signalling. Three distinct mechanisms, which are not necessarily mutually exclusive, have been proposed to account for the long-range effects of Shh: simple diffusion of Shh, a relay mechanism in which Shh activates secondary signals, and direct delivery of Shh through cytoplasmic extensions, termed cytonemes. Although there is much data (using soluble recombinant Shh (ShhN)) to support the simple diffusion model of long-range Shh signalling, there has been little evidence to date for a native form of Shh that is freely diffusible and not membrane-associated. Here we provide evidence for a freely diffusible form of Shh (s-ShhNp) that is cholesterol modified, multimeric and biologically potent. We further demonstrate that the availability of s-ShhNp is regulated by two functional antagonists of the Shh pathway, Patched (Ptc) and Hedgehog-interacting protein (Hip). Finally, we show a gradient of s-ShhNp across the anterior-posterior axis of the chick limb, demonstrating the physiological relevance of s-ShhNp.  相似文献   
4.
Zhang LI  Tan AY  Schreiner CE  Merzenich MM 《Nature》2003,424(6945):201-205
The direction of frequency-modulated (FM) sweeps is an important temporal cue in animal and human communication. FM direction-selective neurons are found in the primary auditory cortex (A1), but their topography and the mechanisms underlying their selectivity remain largely unknown. Here we report that in the rat A1, direction selectivity is topographically ordered in parallel with characteristic frequency (CF): low CF neurons preferred upward sweeps, whereas high CF neurons preferred downward sweeps. The asymmetry of 'inhibitory sidebands', suppressive regions flanking the tonal receptive field (TRF) of the spike response, also co-varied with CF. In vivo whole-cell recordings showed that the direction selectivity already present in the synaptic inputs was enhanced by cortical synaptic inhibition, which suppressed the synaptic excitation of the non-preferred direction more than that of the preferred. The excitatory and inhibitory synaptic TRFs had identical spectral tuning, but with inhibition delayed relative to excitation. The spectral asymmetry of the synaptic TRFs co-varied with CF, as had direction selectivity and sideband asymmetry, and thus suggested a synaptic mechanism for the shaping of FM direction selectivity and its topographic ordering.  相似文献   
5.
6.
Introduction Intheposttreatmentofchoppedfibreproduction,the thirddraftingrollerandtensionheat settingrolleroftenwere tangledbybrokentowforthereasonofhighspeed,hightemperatureofrollersurface,orotheradditionalforeign factors.While,thetworollerswerekeysegmentinthewhole technology.Itwouldleadtooneormoredrumcavedin,and eventobediscardediftheequipmenthadnotbeenstoppedintime.Usually,suchaccidentwouldbringgreatloss,what wouldnotbegotback.Sothetotalsetofequipmentrequiredthatdetectormusthavegoodperfo…  相似文献   
7.
Clathrin-coated vesicles are vehicles for intracellular trafficking in all nucleated cells, from yeasts to humans. Many studies have demonstrated their essential roles in endocytosis and cellular signalling processes at the plasma membrane. By contrast, very few of their non-endocytic trafficking roles are known, the best characterized being the transport of hydrolases from the Golgi complex to the lysosome. Here we show that clathrin is required for polarity of the basolateral plasma membrane proteins in the epithelial cell line MDCK. Clathrin knockdown depolarized most basolateral proteins, by interfering with their biosynthetic delivery and recycling, but did not affect the polarity of apical proteins. Quantitative live imaging showed that chronic and acute clathrin knockdown selectively slowed down the exit of basolateral proteins from the Golgi complex, and promoted their mis-sorting into apical carrier vesicles. Our results demonstrate a broad requirement for clathrin in basolateral protein trafficking in epithelial cells.  相似文献   
8.
刘伟 《科技信息》2008,(29):31-32
本文对计算机辅助鉴定技术在海洋浮游植物分类鉴定中的应用进行了探讨,总结了不同技术的特点,并在总结计算机辅助鉴定技术在海洋浮游植物分类鉴定方面应用现状的基础上,对其发展前景做出了展望。  相似文献   
9.
Increased expression of vascular cell adhesion molecule 1 (VCAM1) is associated with a variety of chronic inflammatory conditions, making its expression and function a target for therapeutic intervention. We have recently identified CAM741, a derivative of a fungus-derived cyclopeptolide that acts as a selective inhibitor of VCAM1 synthesis in endothelial cells. Here we show that the compound represses the biosynthesis of VCAM1 in cells by blocking the process of cotranslational translocation, which is dependent on the signal peptide of VCAM1. CAM741 does not inhibit targeting of the VCAM1 nascent chains to the translocon channel but prevents translocation to the luminal side of the endoplasmic reticulum (ER), through a process that involves the translocon component Sec61beta. Consequently, the VCAM1 precursor protein is synthesized towards the cytosolic compartment of the cells, where it is degraded. Our results indicate that the inhibition of cotranslational translocation with low-molecular-mass compounds, using specificity conferred by signal peptides, can modulate the biosynthesis of certain secreted and/or membrane proteins. In addition, they highlight cotranslational translocation at the ER membrane as a potential target for drug discovery.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号