首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
综合类   5篇
  2008年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
Oh P  Li Y  Yu J  Durr E  Krasinska KM  Carver LA  Testa JE  Schnitzer JE 《Nature》2004,429(6992):629-635
The molecular complexity of tissues and the inaccessibility of most cells within a tissue limit the discovery of key targets for tissue-specific delivery of therapeutic and imaging agents in vivo. Here, we describe a hypothesis-driven, systems biology approach to identifying a small subset of proteins induced at the tissue-blood interface that are inherently accessible to antibodies injected intravenously. We use subcellular fractionation, subtractive proteomics and bioinformatics to identify endothelial cell surface proteins exhibiting restricted tissue distribution and apparent tissue modulation. Expression profiling and gamma-scintigraphic imaging with antibodies establishes two of these proteins, aminopeptidase-P and annexin A1, as selective in vivo targets for antibodies in lungs and solid tumours, respectively. Radio-immunotherapy to annexin A1 destroys tumours and increases animal survival. This analytical strategy can map tissue- and disease-specific expression of endothelial cell surface proteins to uncover novel accessible targets useful for imaging and therapy.  相似文献   
3.
Single kinesin molecules studied with a molecular force clamp.   总被引:18,自引:0,他引:18  
K Visscher  M J Schnitzer  S M Block 《Nature》1999,400(6740):184-189
Kinesin is a two-headed, ATP-driven motor protein that moves processively along microtubules in discrete steps of 8 nm, probably by advancing each of its heads alternately in sequence. Molecular details of how the chemical energy stored in ATP is coupled to mechanical displacement remain obscure. To shed light on this question, a force clamp was constructed, based on a feedback-driven optical trap capable of maintaining constant loads on single kinesin motors. The instrument provides unprecedented resolution of molecular motion and permits mechanochemical studies under controlled external loads. Analysis of records of kinesin motion under variable ATP concentrations and loads revealed several new features. First, kinesin stepping appears to be tightly coupled to ATP hydrolysis over a wide range of forces, with a single hydrolysis per 8-nm mechanical advance. Second, the kinesin stall force depends on the ATP concentration. Third, increased loads reduce the maximum velocity as expected, but also raise the apparent Michaelis-Menten constant. The kinesin cycle therefore contains at least one load-dependent transition affecting the rate at which ATP molecules bind and subsequently commit to hydrolysis. It is likely that at least one other load-dependent rate exists, affecting turnover number. Together, these findings will necessitate revisions to our understanding of how kinesin motors function.  相似文献   
4.
5.
Llewellyn ME  Barretto RP  Delp SL  Schnitzer MJ 《Nature》2008,454(7205):784-788
Sarcomeres are the basic contractile units of striated muscle. Our knowledge about sarcomere dynamics has primarily come from in vitro studies of muscle fibres and analysis of optical diffraction patterns obtained from living muscles. Both approaches involve highly invasive procedures and neither allows examination of individual sarcomeres in live subjects. Here we report direct visualization of individual sarcomeres and their dynamical length variations using minimally invasive optical microendoscopy to observe second-harmonic frequencies of light generated in the muscle fibres of live mice and humans. Using microendoscopes as small as 350 microm in diameter, we imaged individual sarcomeres in both passive and activated muscle. Our measurements permit in vivo characterization of sarcomere length changes that occur with alterations in body posture and visualization of local variations in sarcomere length not apparent in aggregate length determinations. High-speed data acquisition enabled observation of sarcomere contractile dynamics with millisecond-scale resolution. These experiments point the way to in vivo imaging studies demonstrating how sarcomere performance varies with physical conditioning and physiological state, as well as imaging diagnostics revealing how neuromuscular diseases affect contractile dynamics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号