首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
现状及发展   1篇
研究方法   1篇
综合类   3篇
  2017年   1篇
  2010年   1篇
  2001年   2篇
  1970年   1篇
排序方式: 共有5条查询结果,搜索用时 156 毫秒
1
1.
2.
van Os J  Kenis G  Rutten BP 《Nature》2010,468(7321):203-212
Psychotic syndromes can be understood as disorders of adaptation to social context. Although heritability is often emphasized, onset is associated with environmental factors such as early life adversity, growing up in an urban environment, minority group position and cannabis use, suggesting that exposure may have an impact on the developing 'social' brain during sensitive periods. Therefore heritability, as an index of genetic influence, may be of limited explanatory power unless viewed in the context of interaction with social effects. Longitudinal research is needed to uncover gene-environment interplay that determines how expression of vulnerability in the general population may give rise to more severe psychopathology.  相似文献   
3.
Even though the etiology of Alzheimer’s disease (AD) remains unknown, it is suggested that an interplay among genetic, epigenetic and environmental factors is involved. An increasing body of evidence pinpoints that dysregulation in the epigenetic machinery plays a role in AD. Recent developments in genomic technologies have allowed for high throughput interrogation of the epigenome, and epigenome-wide association studies have already identified unique epigenetic signatures for AD in the cortex. Considerable evidence suggests that early dysregulation in the brainstem, more specifically in the raphe nuclei and the locus coeruleus, accounts for the most incipient, non-cognitive symptomatology, indicating a potential causal relationship with the pathogenesis of AD. Here we review the advancements in epigenomic technologies and their application to the AD research field, particularly with relevance to the brainstem. In this respect, we propose the assessment of epigenetic signatures in the brainstem as the cornerstone of interrogating causality in AD. Understanding how epigenetic dysregulation in the brainstem contributes to AD susceptibility could be of pivotal importance for understanding the etiology of the disease and for the development of novel diagnostic and therapeutic strategies.  相似文献   
4.
A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis.   总被引:15,自引:0,他引:15  
Hereditary hemochromatosis (HH) is a very common disorder characterized by iron overload and multi-organ damage. Several genes involved in iron metabolism have been implicated in the pathology of HH (refs. 1-4). We report that a mutation in the gene encoding Solute Carrier family 11, member A3 (SLC11A3), also known as ferroportin, is associated with autosomal dominant hemochromatosis.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号