首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
现状及发展   1篇
综合类   3篇
  2012年   1篇
  2010年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The present research brings new insights on the role of admixed corrosion inhibitors in the processes of cement hydration and rebar corrosion.The admixing of NaCl and the corrosion inhibitors in fresh mortar was found to alter the morphology and microstructure of the hardened mortar at the steel-mortar interfacial region.The admixing of the inhibitors increased the risk of carbonation of cement hydrates at the steel-mortar interfacial region,but partially displaced chloride ions. Chloride and the admixed in...  相似文献   
2.
Bizzarro M  Baker JA  Haack H  Ulfbeck D  Rosing M 《Nature》2003,421(6926):931-933
The 176Lu to 176Hf decay series has been widely used to understand the nature of Earth's early crust-mantle system. The interpretation, however, of Lu-Hf isotope data requires accurate knowledge of the radioactive decay constant of 176Lu (lambda176Lu), as well as bulk-Earth reference parameters. A recent calibration of the lambda176Lu value calls for the presence of highly unradiogenic hafnium in terrestrial zircons with ages greater than 3.9 Gyr, implying widespread continental crust extraction from an isotopically enriched mantle source more than 4.3 Gyr ago, but does not provide evidence for a complementary depleted mantle reservoir. Here we report Lu-Hf isotope measurements of different Solar System objects including chondrites and basaltic eucrites. The chondrites define a Lu-Hf isochron with an initial 176Hf/177Hf ratio of 0.279628 +/- 0.000047, corresponding to lambda176Lu = 1.983 +/- 0.033 x 10-11 yr-1 using an age of 4.56 Gyr for the chondrite-forming event. This lambda176Lu value indicates that Earth's oldest minerals were derived from melts of a mantle source with a time-integrated history of depletion rather than enrichment. The depletion event must have occurred no later than 320 Myr after planetary accretion, consistent with timing inferred from extinct radionuclides.  相似文献   
3.
Modern basalts have seemingly lost all 'memory' of the primitive Earth's mantle except for an ambiguous isotopic signal observed in some rare gases. Although the Earth is expected to have reached a thermal steady state within several hundred million years of accretion, it is not known how and when the initial chemical fractionations left over from planetary accretion (and perhaps a stage involving a magma ocean) were overshadowed by fractionations imposed by modern-style geodynamics. Because of the lack of samples older than 4 Gyr, this early dynamic regime of the Earth is poorly understood. Here we compare published Hf-Nd isotope data on supracrustals from Isua, Greenland, with similar data on lunar rocks and the SNC (martian) meteorites, and show that, about 3.8 Gyr ago, the geochemical signature of the Archaean mantle was partly inherited from the initial differentiation of the Earth. The observed features seem to indicate that the planet at that time was still losing a substantial amount of primordial heat. The survival of remnants from an early layering in the modern deep mantle may account for some unexplained seismological, thermal and geochemical characteristics of the Earth as observed today.  相似文献   
4.
Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate tectonic processes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号