首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
现状及发展   3篇
研究方法   1篇
综合类   5篇
  2011年   1篇
  2000年   1篇
  1988年   2篇
  1982年   1篇
  1980年   1篇
  1970年   3篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
A set of fundamental issues in neuroethology concerns the neural mechanisms underlying behavior and behavioral plasticity. We have recently analyzed these issues by combining a simple systems approach in the marine mollusc Aplysia with a developmental analysis aimed at examining the emergence and maturation of different forms of behavior and learning. We have focussed on two kinds of questions: 1) How are specific neural circuits developmentally assembled to mediate different types of behaviors? and 2) how is plasticity integrated with these circuits to give rise to different forms of learning? From our analysis of the development of learning and memory in Aplysia, several themes have emerged: 1) Different forms of learning emerge according to different developmental timetables. 2) Cellular analogs of learning have the same developmental timetables as their respective forms of behavioral learning. 3) An analysis of non-decremented responses prior to the emergence of sensitization reveals a novel inhibitory process on both behavioral and cellular levels. 4) Sensitization emerges simultaneously in diverse response systems, suggesting an underlying general process. 5) A widespread proliferation of central neurons occurs in the same developmental stage as the emergence of sensitization, raising the possibility that some aspect of the trigger for neuronal proliferation may also contribute to the expression of sensitization.  相似文献   
2.
3.
Summary Oncopeltus fasciatus adults were treated with the antiallatotropin, precocene II and the circadian rhythms of feeding and mating behavior were monitored at 2-h intervals from lights on to lights off under 2 photoperiod regimes. Females ovariectomized as 5th instars were monitored for feeding and mating behavior at 2–3-h intervals from lights on to lights off as well. Neither precocene treatment nor ovariectomy was found to affect the mating or feeding behavioral rhythms under any photoperiod regime.Acknowledgment. This work was supported by a National Science Foundation Grant number PCM76-10560 to M.A.R.  相似文献   
4.
5.
6.
Summary A set of fundamental issues in neuroethology concerns the neural mechanisms underlying behavior and behavioral plasticity. We have recently analyzed these issues by combining a simple systems approach in the marine molluscAplysia with a developmental analysis aimed at examining the emergence and maturation of different forms of behavior and learning. We have focussed on two kinds of questions: 1) How are specific neural circuits developmentally assembled to mediate different types of behaviors? and 2) how is plasticity integrated with these circuits to give rise to different forms of learning? From our analysis of the development of learning and memory inAplysia, several themes have emerged: 1) Different forms of learning emerge according to different developmental timetables. 2) Cellular analogs of learning have the same developmental timetables as their respective forms of behavioral learing. 3) An analysis of non-decremented responses prior to the emergence of sensitization reveals a novel inhibitory process on both behavioral and cellular levels. 4) Sensitization emerges simultaneously in diverse response systems, suggesting an underlying general process. 5) A widespread proliferation of central neurons occurs in the same developmental stage as the emergence of sensitization, raising the possibility that some aspect of the trigger for neuronal proliferation may also contribute to the expression of sensitization.  相似文献   
7.
The transforming growth factor-beta (TGF-beta) superfamily encompasses a large group of structurally related polypeptides that are capable of regulating cell growth and differentiation in a wide range of embryonic and adult tissues. Growth/differentiation factor-1 (Gdf-1, encoded by Gdf1) is a TGF-beta family member of unknown function that was originally isolated from an early mouse embryo cDNA library and is expressed specifically in the nervous systemin late-stage embryos and adult mice. Here we show that at early stages of mouse development, Gdfl is expressed initially throughout the embryo proper and then most prominently in the primitive node, ventral neural tube, and intermediate and lateral plate mesoderm. To examine its biological function, we generated a mouse line carrying a targeted mutation in Gdf1. Gdf1-/- mice exhibited a spectrum of defects related to left-right axis formation, including visceral situs inversus, right pulmonary isomerism and a range of cardiac anomalies. In most Gdf1-/- embryos, the expression of Ebaf (formerly lefty-1) in the left side of the floor plate and Leftb (formerly lefty-2), nodal and Pitx2 in the left lateral plate mesoderm was absent, suggesting that Gdf1 acts upstream of these genes either directly or indirectly to activate their expression. Our findings suggest that Gdf1 acts early in the pathway of gene activation that leads to the establishment of left-right asymmetry.  相似文献   
8.
Heiles C  Campbell DB  Rankin JM 《Nature》1970,226(5245):529-531
This paper reports further detailed measurements of strong radio pulses from the pulsar NP 0532 in the Crab nebula, recorded at Arecibo.  相似文献   
9.
IgE-dependent release of leukotriene C4 from alveolar macrophages   总被引:11,自引:0,他引:11  
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号