排序方式: 共有65条查询结果,搜索用时 15 毫秒
1.
2.
How do we understand the actions of others? According to the direct matching hypothesis, action understanding results from a mechanism that maps an observed action onto motor representations of that action. Although supported by neurophysiological and brain-imaging studies, direct evidence for this hypothesis is sparse. In visually guided actions, task-specific proactive eye movements are crucial for planning and control. Because the eyes are free to move when observing such actions, the direct matching hypothesis predicts that subjects should produce eye movements similar to those produced when they perform the tasks. If an observer analyses action through purely visual means, however, eye movements will be linked reactively to the observed action. Here we show that when subjects observe a block stacking task, the coordination between their gaze and the actor's hand is predictive, rather than reactive, and is highly similar to the gaze-hand coordination when they perform the task themselves. These results indicate that during action observation subjects implement eye motor programs directed by motor representations of manual actions and thus provide strong evidence for the direct matching hypothesis. 相似文献
3.
Greenberg JI Shields DJ Barillas SG Acevedo LM Murphy E Huang J Scheppke L Stockmann C Johnson RS Angle N Cheresh DA 《Nature》2008,456(7223):809-813
Angiogenesis does not only depend on endothelial cell invasion and proliferation: it also requires pericyte coverage of vascular sprouts for vessel stabilization. These processes are coordinated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) through their cognate receptors on endothelial cells and vascular smooth muscle cells (VSMCs), respectively. PDGF induces neovascularization by priming VSMCs/pericytes to release pro-angiogenic mediators. Although VEGF directly stimulates endothelial cell proliferation and migration, its role in pericyte biology is less clear. Here we define a role for VEGF as an inhibitor of neovascularization on the basis of its capacity to disrupt VSMC function. Specifically, under conditions of PDGF-mediated angiogenesis, VEGF ablates pericyte coverage of nascent vascular sprouts, leading to vessel destabilization. At the molecular level, VEGF-mediated activation of VEGF-R2 suppresses PDGF-Rbeta signalling in VSMCs through the assembly of a previously undescribed receptor complex consisting of PDGF-Rbeta and VEGF-R2. Inhibition of VEGF-R2 not only prevents assembly of this receptor complex but also restores angiogenesis in tissues exposed to both VEGF and PDGF. Finally, genetic deletion of tumour cell VEGF disrupts PDGF-Rbeta/VEGF-R2 complex formation and increases tumour vessel maturation. These findings underscore the importance of VSMCs/pericytes in neovascularization and reveal a dichotomous role for VEGF and VEGF-R2 signalling as both a promoter of endothelial cell function and a negative regulator of VSMCs and vessel maturation. 相似文献
4.
Heterotrimeric G-proteins bind to cell-surface receptors and are integral in transmission of signals from outside the cell. Upon activation of the Galpha subunit by binding of GTP, the Galpha and Gbetagamma subunits dissociate and interact with effector proteins for signal transduction. Regulatory proteins with the 19-amino-acid GoLoco motif can bind to Galpha subunits and maintain G-protein subunit dissociation in the absence of Galpha activation. Here we describe the structural determinants of GoLoco activity as revealed by the crystal structure of Galpha(i1) GDP bound to the GoLoco region of the 'regulator of G-protein signalling' protein RGS14. Key contacts are described between the GoLoco motif and Galpha protein, including the extension of GoLoco's highly conserved Asp/Glu-Gln-Arg triad into the nucleotide-binding pocket of Galpha to make direct contact with the GDP alpha- and beta-phosphates. The structural organization of the GoLoco Galpha(i1) complex, when combined with supporting data from domain-swapping experiments, suggests that the Galpha all-helical domain and GoLoco-region carboxy-terminal residues control the specificity of GoLoco Galpha interactions. 相似文献
5.
Formation and propagation of matter-wave soliton trains 总被引:15,自引:0,他引:15
Attraction between the atoms of a Bose-Einstein condensate renders it unstable to collapse, although a condensate with a limited number of atoms can be stabilized by confinement in an atom trap. However, beyond this number the condensate collapses. Condensates constrained to one-dimensional motion with attractive interactions are predicted to form stable solitons, in which the attractive forces exactly compensate for wave-packet dispersion. Here we report the formation of bright solitons of (7)Li atoms in a quasi-one-dimensional optical trap, by magnetically tuning the interactions in a stable Bose-Einstein condensate from repulsive to attractive. The solitons are set in motion by offsetting the optical potential, and are observed to propagate in the potential for many oscillatory cycles without spreading. We observe a soliton train, containing many solitons; repulsive interactions between neighbouring solitons are inferred from their motion. 相似文献
6.
7.
8.
It is important to know how different organs 'manage' their stem cells. Both hair and feather follicles show robust regenerative powers that episodically renew the epithelial organ. However, the evolution of feathers (from reptiles to birds) and hairs (from reptiles to mammals) are independent events and their follicular structures result from convergent evolution. Because feathers do not have the anatomical equivalent of a hair follicle bulge, we are interested in determining where their stem cells are localized. By applying long-term label retention, transplantation and DiI tracing to map stem cell activities, here we show that feather follicles contain slow-cycling long-term label-retaining cells (LRCs), transient amplifying cells and differentiating keratinocytes. Each population, located in anatomically distinct regions, undergoes dynamic homeostasis during the feather cycle. In the growing follicle, LRCs are enriched in a 'collar bulge' niche. In the moulting follicle, LRCs shift to populate a papillar ectoderm niche near the dermal papilla. On transplantation, LRCs show multipotentiality. In a three-dimensional view, LRCs are configured as a ring that is horizontally placed in radially symmetric feathers but tilted in bilaterally symmetric feathers. The changing topology of stem cell activities may contribute to the construction of complex feather forms. 相似文献
9.
The morphogenesis of feathers 总被引:15,自引:0,他引:15
Feathers are highly ordered, hierarchical branched structures that confer birds with the ability of flight. Discoveries of fossilized dinosaurs in China bearing 'feather-like' structures have prompted interest in the origin and evolution of feathers. However, there is uncertainty about whether the irregularly branched integumentary fibres on dinosaurs such as Sinornithosaurus are truly feathers, and whether an integumentary appendage with a major central shaft and notched edges is a non-avian feather or a proto-feather. Here, we use a developmental approach to analyse molecular mechanisms in feather-branching morphogenesis. We have used the replication-competent avian sarcoma retrovirus to deliver exogenous genes to regenerating flight feather follicles of chickens. We show that the antagonistic balance between noggin and bone morphogenetic protein 4 (BMP4) has a critical role in feather branching, with BMP4 promoting rachis formation and barb fusion, and noggin enhancing rachis and barb branching. Furthermore, we show that sonic hedgehog (Shh) is essential for inducing apoptosis of the marginal plate epithelia, which results in spaces between barbs. Our analyses identify the molecular pathways underlying the topological transformation of feathers from cylindrical epithelia to the hierarchical branched structures, and provide insights on the possible developmental mechanisms in the evolution of feather forms. 相似文献
10.
Marchis F Hestroffer D Descamps P Berthier J Bouchez AH Campbell RD Chin JC van Dam MA Hartman SK Johansson EM Lafon RE Le Mignant D de Pater I Stomski PJ Summers DM Vachier F Wizinovich PL Wong MH 《Nature》2006,439(7076):565-567
The Trojan population consists of two swarms of asteroids following the same orbit as Jupiter and located at the L4 and L5 stable Lagrange points of the Jupiter-Sun system (leading and following Jupiter by 60 degrees ). The asteroid 617 Patroclus is the only known binary Trojan. The orbit of this double system was hitherto unknown. Here we report that the components, separated by 680 km, move around the system's centre of mass, describing a roughly circular orbit. Using this orbital information, combined with thermal measurements to estimate the size of the components, we derive a very low density of 0.8(- 0.1)+0.2 g cm(-3). The components of 617 Patroclus are therefore very porous or composed mostly of water ice, suggesting that they could have been formed in the outer part of the Solar System. 相似文献