首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Interests on climate change in the source region of Yangtze River have been raised since it is a region with the greatest warming over the Tibetan Plateau (TP). A 70-year history of precipitation δ~(18)O has been recovered using an ice core record retrieved in a plat portion of the firn area in the Guoqu Glacier (33°34′37.8″N, 91°10′35.3″E, 5720 m a.s.l.), Mt. Geladaindong (the source region of Yangtze River), in November, 2005. By using a significant positive relationship between ice core δ~(18)O record and summer air temperature (July to September) from the nearby meteorological stations, a history of summer air temperature has been reconstructed for the last 70 years. Summer temperature was relatively low in 1940s and high in 1950s to the middle of 1960s. The lowest temperature occurred in the middle of 1970s. Temperature was low in 1980s and dramatically increased since 1990s, keeping the trend to the begin-ning of the 21st century. The warming rate recorded in the ice core with 0.5℃/10 a since 1970s is much higher that that in the central TP and the Northern Hemisphere (NH), and it becomes 1.1℃/10 a since 1990s which is also higher than these from the central TP and the NH, reflecting an accelerated warm-ing and a more sensitive response to global warming in the high elevation region.  相似文献   
2.
Zheng  Wei  Kang  ShiChang  Feng  XinBin  Zhang  QiangGong  Li  ChaoLiu 《科学通报(英文版)》2010,55(24):2697-2703
The Yarlung Zangbo River is the highest river in the world. It flows from west to east through the southern part of Tibet. The mercury (Hg) speciation and distribution in surface waters and soils near the bank of the Yarlung Zangbo River and its two tribu-taries, the Lhasa and Niyang Rivers, were investigated in June 2007. Simultaneously, major water quality parameters were also measured at the same stations. Total Hg (THg) and total methylmercury (TMeHg) concentrations in surface waters of the Yarlung Zangbo River ranged from 1.46 to 4.99 ng/L and from 0.06 to 0.29 ng/L, respectively, representing the background levels in river systems of the Tibetan Plateau. Particulate Hg (PHg) accounted for 69% of the THg, and the two Hg species had a significant relationship (r=0.990, P<0.01). Approximately 61% of the spatial distribution of THg was controlled by the concentrations of total suspended particles (TSP). Reactive Hg (RHg) concentrations ranged from 0.10 to 0.36 ng/L, and this fraction may play a weak role in terms of the transport and fate of Hg in surface waters. Dissolved methylmercury (DMeHg) constituted 71% of the TMeHg and was significantly correlated with TMeHg (r=0.746, P<0.01). The spatial distribution of TMeHg is not strongly affected by environmental factors such as THg, RHg, temperature, pH, dissolved organic carbon (DOC), and TSP. In addition, the inflow of both the Lhasa and Niyang Rivers probably influences the concentrations of THg in surface waters of the mainstream, but such an effect is not obvious for TMeHg.  相似文献   
3.
A total of 14 surface snow (0-10 cm) samples were collected along the climbing route (6500-8844 m a.s.h) on the northern slope of Mt. Qomolangma in May, 2005. Analysis of elemental concentrations in these samples showed that there are no clear trends for element variations with elevation due to redistribution of surface snow by strong winds during spring. In addition, local crustal aerosol inputs also have an influence on elemental composition of surface snow. Comparison between elemental concentration datasets of 2005 and 1997 indicated that data from 2005 were of higher quality. Elemental concentrations (especially for heavy metals) at Mt. Qomolangma are comparable with polar sites, and far lower than large cities. This indicates that anthropogenic activities and heavy metal pollution have little effect on the Mt. Qomolangma atmospheric environment, which can be representative of the background atmospheric environment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号