首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
现状及发展   2篇
综合类   3篇
  2014年   1篇
  2012年   2篇
  1999年   1篇
  1978年   1篇
排序方式: 共有5条查询结果,搜索用时 109 毫秒
1
1.
Summary Cyclophosphamide given to rats 2 or 5 days after an injection of Yoshida ascites sarcoma cured approximately the same proportion of animals, but the resistance to a subsequent tumor challenge was found only in rats treated with the drug 5 days after tumor injection.  相似文献   
2.
Environmental pollution is a major problem which affects biodiversity, public health and ecosystems worldwide. This issue cannot currently be solved using conventional technology because these treatments are expensive, ineffective and time consuming. Conventional methods focus unduly on the separation, rather than the destruction of contaminants. The use of genetically engi- neered organisms for bioremediation would be an envi- ronmentally-friendly and cost-effective alternative for the management and remediation of pollutants in contaminated sites. Different types of genetically engineered microbes have been developed through recombinant DNA and RNA technologies, these have been utilized for the removal of heavy metals and toxic substances from contaminated sites. Transgenic plants can also mobilize or degrade chlorinated solvent, xenobiotic compounds, explosives and phenolic substances. A symbiotic relationship between genetic engineered microbes and transgenic plants can enhance the effectiveness of bioremediation of contaminated sites. This review examines recent developments in the use of genetically engineered microbes and transgenic plants forthe bioremediation of contaminated sites. This review will also identify the environmental factors which influence bioremediation by genetically engineered microbes and transgenic plants as well as suggesting future directions for research in these areas.  相似文献   
3.
4.
5.
JP Ebran  E Khan  T Nikšić  D Vretenar 《Nature》2012,487(7407):341-344
Nucleonic matter displays a quantum-liquid structure, but in some cases finite nuclei behave like molecules composed of clusters of protons and neutrons. Clustering is a recurrent feature in light nuclei, from beryllium to nickel. Cluster structures are typically observed as excited states close to the corresponding decay threshold; the origin of this phenomenon lies in the effective nuclear interaction, but the detailed mechanism of clustering in nuclei has not yet been fully understood. Here we use the theoretical framework of energy-density functionals, encompassing both cluster and quantum liquid-drop aspects of nuclei, to show that conditions for cluster formation can in part be traced back to the depth of the confining nuclear potential. For the illustrative example of neon-20, we show that the depth of the potential determines the energy spacings between single-nucleon orbitals in deformed nuclei, the localization of the corresponding wavefunctions and, therefore, the degree of nucleonic density clustering. Relativistic functionals, in particular, are characterized by deep single-nucleon potentials. When compared to non-relativistic functionals that yield similar ground-state properties (binding energy, deformation, radii), they predict the occurrence of much more pronounced cluster structures. More generally, clustering is considered as a transitional phenomenon between crystalline and quantum-liquid phases of fermionic systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号