首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
系统科学   1篇
现状及发展   1篇
综合类   2篇
  2015年   1篇
  2011年   1篇
  2008年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Gosse NJ  Nevin LM  Baier H 《Nature》2008,452(7189):892-895
The retinotectal projection has long been studied experimentally and theoretically, as a model for the formation of topographic brain maps. Neighbouring retinal ganglion cells (RGCs) project their axons to neighbouring positions in the optic tectum, thus re-establishing a continuous neural representation of visual space. Mapping along this axis requires chemorepellent signalling from tectal cells, expressing ephrin-A ligands, to retinal growth cones, expressing EphA receptors. High concentrations of ephrin A, increasing from anterior to posterior, prevent temporal axons from invading the posterior tectum. However, the force that drives nasal axons to extend past the anterior tectum and terminate in posterior regions remains to be identified. We tested whether axon-axon interactions, such as competition, are required for posterior tectum innervation. By transplanting blastomeres from a wild-type (WT) zebrafish into a lakritz (lak) mutant, which lacks all RGCs, we created chimaeras with eyes that contained single RGCs. These solitary RGCs often extended axons into the tectum, where they branched to form a terminal arbor. Here we show that the distal tips of these arbors were positioned at retinotopically appropriate positions, ruling out an essential role for competition in innervation of the ephrin-A-rich posterior tectum. However, solitary arbors were larger and more complex than under normal, crowded conditions, owing to a lack of pruning of proximal branches during refinement of the retinotectal projection. We conclude that dense innervation is not required for targeting of retinal axons within the zebrafish tectum but serves to restrict arbor size and shape.  相似文献   
2.
The authors present a case study to demonstrate the possibility of discovering complex and interesting latent structures using hierarchical latent class (HLC) models. A similar effort was made earlier by Zhang (2002), but that study involved only small applications with 4 or 5 observed variables and no more than 2 latent variables due to the lack of efficient learning algorithms. Significant progress has been made since then on algorithmic research, and it is now possible to learn HLC models with dozens of observed variables. This allows us to demonstrate the benefits of HLC models more convincingly than before. The authors have successfully analyzed the CoIL Challenge 2000 data set using HLC models. The model obtained consists of 22 latent variables, and its structure is intuitively appealing. It is exciting to know that such a large and meaningful latent structure can be automatically inferred from data.  相似文献   
3.
Previous research has shown that the consensus of individual exchange rate forecasts performs no better than many commonly used forecasting models in predicting future exchange rates. Studies on equity and bond markets have explored the effects of dispersion in forecasts on the predictive power of forecasts; however, no earlier paper has investigated such effects in the context of the foreign exchange market. This study explores the role of consensus forecast dispersion as a factor leading to bias and anchoring in exchange rate forecasts. Our analysis of five currency pairs reveals that consensus forecasts mostly appear to be unbiased predictors of exchange rates in the long run, but most are unable to pass tests for short‐run unbiasedness. In three of the five currencies examined it appears that forecasters should take greater account of reported forecast dispersion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
4.
Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ~94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号