首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
现状及发展   4篇
综合类   7篇
  2012年   2篇
  2011年   1篇
  2002年   1篇
  1983年   1篇
  1978年   1篇
  1967年   2篇
  1966年   2篇
  1961年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
E C Wiener  W R Loewenstein 《Nature》1983,305(5933):433-435
The cell-to-cell permeability of the junctions of various cultured mammalian cell types depends on the concentration of intracellular cyclic AMP [( cAMP]i). The permeability rises when the cells are supplied with exogenous cyclic AMP or when their cyclic AMP synthesis is stimulated with choleragen or hormones; it falls when [cAMP]i is lowered by application of serum or due to increase in cell density. The rise and fall in permeability take several hours to develop (the rise is protein synthesis-dependent) and they occur concurrently with the rise and fall in the number of intramembrane particles of the gap junctions, which probably embody the cell-to-cell channels. Is this permeability regulation mediated by phosphorylating protein kinase? In many eukaryotes, the cyclic AMP receptor is a protein kinase consisting of a pair of regulatory subunits and a pair of catalytic subunits. The latter dissociate from the holoenzyme as the cyclic AMP binds to the regulatory subunits and, in this dissociated form, catalyse the phosphorylation of the target. The regulatory subunit occurs in two isoenzyme forms, I and II. The catalytic subunit seems invariant; subunits from different isoenzymes can substitute for each other. We show here that a mutant cell lacking the isoenzyme I is deficient in permeable junctions, and that this junctional defect is corrected when the mutant is supplied with exogenous catalytic subunit.  相似文献   
2.
Summary The inhibitory action ofHepatitis infectiosa virus on the SDH activity of Detroit-6 (VA) cell lines was investigated. The full inhibition of the SDH activity took place at the end of the third day after the infection. As this phenomenon precedes the cytopathogenetic effect of viral infection, it may be of some help in the early detection of the infection.  相似文献   
3.
Summary Experiments on rats revealed that liver damage caused by allyl alcohol (measured by the rate of necrosis) is enhanced by alcoholic beverages such as ethanol and European or hybride wine. In this respect, wine seems to cause more damage than mere alcohol.  相似文献   
4.
Wiener R  Zhang X  Wang T  Wolberger C 《Nature》2012,483(7391):618-622
Histones are ubiquitinated in response to DNA double-strand breaks (DSB), promoting recruitment of repair proteins to chromatin. UBC13 (also known as UBE2N) is a ubiquitin-conjugating enzyme (E2) that heterodimerizes with UEV1A (also known as UBE2V1) and synthesizes K63-linked polyubiquitin (K63Ub) chains at DSB sites in concert with the ubiquitin ligase (E3), RNF168 (ref. 3). K63Ub synthesis is regulated in a non-canonical manner by the deubiquitinating enzyme, OTUB1 (OTU domain-containing ubiquitin aldehyde-binding protein 1), which binds preferentially to the UBC13~Ub thiolester. Residues amino-terminal to the OTU domain, which had been implicated in ubiquitin binding, are required for binding to UBC13~Ub and inhibition of K63Ub synthesis. Here we describe structural and biochemical studies elucidating how OTUB1 inhibits UBC13 and other E2 enzymes. We unexpectedly find that OTUB1 binding to UBC13~Ub is allosterically regulated by free ubiquitin, which binds to a second site in OTUB1 and increases its affinity for UBC13~Ub, while at the same time disrupting interactions with UEV1A in a manner that depends on the OTUB1 N terminus. Crystal structures of an OTUB1-UBC13 complex and of OTUB1 bound to ubiquitin aldehyde and a chemical UBC13~Ub conjugate show that binding of free ubiquitin to OTUB1 triggers conformational changes in the OTU domain and formation of a ubiquitin-binding helix in the N terminus, thus promoting binding of the conjugated donor ubiquitin in UBC13~Ub to OTUB1. The donor ubiquitin thus cannot interact with the E2 enzyme, which has been shown to be important for ubiquitin transfer. The N-terminal helix of OTUB1 is positioned to interfere with UEV1A binding to UBC13, as well as with attack on the thiolester by an acceptor ubiquitin, thereby inhibiting K63Ub synthesis. OTUB1 binding also occludes the RING E3 binding site on UBC13, thus providing a further component of inhibition. The general features of the inhibition mechanism explain how OTUB1 inhibits other E2 enzymes in a non-catalytic manner.  相似文献   
5.
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号