首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
综合类   11篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有11条查询结果,搜索用时 0 毫秒
1.
Cancer immunotherapy comes of age   总被引:1,自引:0,他引:1  
Mellman I  Coukos G  Dranoff G 《Nature》2011,480(7378):480-489
Activating the immune system for therapeutic benefit in cancer has long been a goal in immunology and oncology. After decades of disappointment, the tide has finally changed due to the success of recent proof-of-concept clinical trials. Most notable has been the ability of the anti-CTLA4 antibody, ipilimumab, to achieve a significant increase in survival for patients with metastatic melanoma, for which conventional therapies have failed. In the context of advances in the understanding of how tolerance, immunity and immunosuppression regulate antitumour immune responses together with the advent of targeted therapies, these successes suggest that active immunotherapy represents a path to obtain a durable and long-lasting response in cancer patients.  相似文献   
2.
D J Vaux  A Helenius  I Mellman 《Nature》1988,336(6194):36-42
Using in vitro immunization, we have reconstructed three consecutive steps of an idiotype network to show that the nucleocapsid of Semliki Forest virus contains a specific 'receptor' for the cytoplasmic tail of the E2 spike glycoprotein. This interaction could be the basis for the highly selective inclusion of viral glycoproteins--and exclusion of host cell surface proteins--during virus budding.  相似文献   
3.
4.
V A Lewis  T Koch  H Plutner  I Mellman 《Nature》1986,324(6095):372-375
Macrophages, granulocytes and many lymphocytes express or secrete receptors for the Fc domain of immunoglobulins (Ig). These Fc receptors (FcRs) are heterogeneous and can be distinguished on the basis of their cellular distribution and specificities for different immunoglobulin isotypes. Although their functions are not completely understood, FcRs are known to be involved in triggering various effector cell functions and in regulating differentiation and development of B-cells. One of the best characterized is the mouse macrophage-lymphocyte receptor for IgG1 and IgG2b (ref. 5). On macrophages, this FcR mediates the endocytosis of antibody-antigen complexes via coated pits and coated vesicles, the phagocytosis of Ig-coated particles, and the release of various inflammatory and cytotoxic agents. It is possible that the receptor possesses an intrinsic ligand-activated ion channel activity responsible for some of these functions. The IgG1/IgG2b FcR has been isolated and shown to be a transmembrane glycoprotein of relative molecular mass (Mr) 47,000-60,000 (47-60 K) containing four N-linked oligosaccharide chains and a large (greater than 10K) cytoplasmic domain. It is also immunologically indistinguishable from the murine Ly-17 alloantigen which, in turn, is tightly linked to the Mls lymphocyte activation locus. Here we describe the isolation and characterisation of a complementary DNA clone encoding the whole of the IgG1/IgG2b FcR expressed by the mouse macrophage-like cell line P388D1. The receptor is a member of the immunoglobulin superfamily and, like Ly-17, maps to the distal portion of chromosome 1. cDNA probes detect one or two mRNA species in FcR+ macrophage and B-cell lines, but not in FcR- cells or a receptor-deficient variant derived from a FcR+ B-cell line. Finally, DNA hybridization analysis indicates the receptor gene is partially deleted or rearranged in the FcR- variant.  相似文献   
5.
6.
W Hunziker  T Koch  J A Whitney  I Mellman 《Nature》1990,345(6276):628-632
It is well known that Fc receptors for IgG (FcRII) on macrophages mediate the endocytosis of antibody-antigen complexes and signal the release of inflammatory and cytotoxic agents. FcRII are also expressed at high levels on B cells where they are less involved in endocytosis than in modulating B-cell activation by membrane immunoglobulins. Although crosslinking of membrane immunoglobulins can result in B-cell differentiation and proliferation through stimulation of phospholipase C, mobilization of intracellular Ca2+, and activation of protein kinase C, crosslinking FcR with membrane immunoglobulins confers a dominant inhibitory signal that prevents or aborts activation. This form of regulation may have a role in the induction of tolerance by IgG and in controlling the B-cell repertoire by anti-idiotypes. The different functions of FcR on B cells and macrophages may reflect the fact that these cell types express closely related but distinct FcR isoforms. We have recently found that the main lymphocyte FcR isoform, FcRII-B1, is unable to mediate endocytosis by way of coated pits and coated vesicles owing to an in-frame insertion of 47 amino acids in its cytoplasmic tail. Here we show that this insert, absent from the FcRII-B2 macrophage isoform, also contains serine phosphorylation sites that may have a role in the ability of FcR to regulate B-cell activation through membrane immunoglobulins.  相似文献   
7.
Shin JS  Ebersold M  Pypaert M  Delamarre L  Hartley A  Mellman I 《Nature》2006,444(7115):115-118
Dendritic cells have a unique function in the immune response owing to their ability to stimulate immunologically naive T lymphocytes. In response to microbial and inflammatory stimuli, dendritic cells enhance their capacity for antigen presentation by a process of terminal differentiation, termed maturation. The conversion of immature to mature dendritic cells is accompanied by a marked cellular reorganization, including the redistribution of major histocompatibility complex class II molecules (MHC II) from late endosomal and lysosomal compartments to the plasma membrane and the downregulation of some forms of endocytosis, which has been thought to slow the clearance of MHC II from the surface. The relative extent to which these or other mechanisms contribute to the regulation of surface MHC II remains unclear, however. Here we find that the MHC II beta-chain cytoplasmic tail is ubiquitinated in mouse immature dendritic cells. Although only partly required for the sequestration of MHC II in multivesicular bodies, this modification is essential for endocytosis. Notably, ubiquitination of MHC II ceased upon maturation, resulting in the accumulation of MHC II at the cell surface. Dendritic cells thus exhibit a unique ability to regulate MHC II surface expression by selectively controlling MHC II ubiquitination.  相似文献   
8.
Winckler B  Forscher P  Mellman I 《Nature》1999,397(6721):698-701
The asymmetric distribution of proteins to distinct domains in the plasma membrane is crucial to the function of many polarized cells. In epithelia, distinct apical and basolateral surfaces are maintained by tight junctions that prevent diffusion of proteins and lipids between the two domains. Polarized neurons maintain axonal and somatodendritic plasma membrane domains without an obvious physical barrier. Indeed, the artificial lipid Dil encounters no diffusion barrier at the presumptive domain boundary, the axon hillock. By measuring the lateral mobility of membrane proteins using optical tweezers, we show here that some membrane proteins exhibit markedly reduced mobility in the initial segment of the axon. Disruption of F-actin and low levels of dimethyl sulphoxide (DMSO) abolish this diffusion barrier and lead to redistribution of membrane markers that had previously been polarized. Immobilization in the initial segment may reflect, at least in part, differential tethering to cytoskeletal components. Therefore, the ability to maintain a polarized distribution of membrane proteins depends on a specialized domain at the initial segment of the axon, which restricts lateral mobility and serves as a new type of diffusion barrier that acts in the absence of cell-cell contact.  相似文献   
9.
Chow A  Toomre D  Garrett W  Mellman I 《Nature》2002,418(6901):988-994
Central to the initiation of immune responses is recognition of peptide antigen by T lymphocytes. The cell biology of dendritic cells makes them ideally suited for the essential process of antigen presentation. Their life cycle includes several stages characterized by distinct functions and mechanisms of regulation. Immature dendritic cells synthesize large amounts of major histocompatibility complex class II molecules (MHC II), but the alpha beta-dimers are targeted to late endosomes and lysosomes (often referred to as MHC class II compartments) where they reside unproductively with internalized antigens. After exposure to microbial products or inflammatory mediators, endocytosis is downregulated, the expression of co-stimulatory molecules is enhanced, and newly formed immunogenic MHC II-peptide complexes are transported to the cell surface. That these MHC II molecules reach the surface is surprising, as the lysosomes comprise the terminal degradative compartment of the endocytic pathway from which exogenous components generally cannot be recovered intact. Here we have visualized this pathway in live dendritic cells by video microscopy, using cells expressing MHC II tagged with green fluorescent protein (GFP). We show that on stimulation, dendritic cells generate tubules from lysosomal compartments that go on to fuse directly with the plasma membrane.  相似文献   
10.
Mellman I 《Nature》2001,410(6832):1026
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号