首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   4篇
  2012年   1篇
  2010年   1篇
  2000年   1篇
  1983年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
2.
Nucleotide sequence and deletion analysis have been used to identify the regulatory and coding sequences comprising the cholera toxin operon (ctx). Incorporation of defined in vitro-generated ctx deletion mutations into Vibrio cholerae by in vivo genetic recombination produced strains which have practical value in cholera vaccine development.  相似文献   
3.
Type VI secretion systems are bacterial virulence-associated nanomachines composed of proteins that are evolutionarily related to components of bacteriophage tails. Here we show that protein secretion by the type VI secretion system of Vibrio cholerae requires the action of a dynamic intracellular tubular structure that is structurally and functionally homologous to contractile phage tail sheath. Time-lapse fluorescence light microscopy reveals that sheaths of the type VI secretion system cycle between assembly, quick contraction, disassembly and re-assembly. Whole-cell electron cryotomography further shows that the sheaths appear as long tubular structures in either extended or contracted conformations that are connected to the inner membrane by a distinct basal structure. These data support a model in which the contraction of the type VI secretion system sheath provides the energy needed to translocate proteins out of effector cells and into adjacent target cells.  相似文献   
4.
Hassan F  Kamruzzaman M  Mekalanos JJ  Faruque SM 《Nature》2010,467(7318):982-985
Bacterial chromosomes often carry integrated genetic elements (for example plasmids, transposons, prophages and islands) whose precise function and contribution to the evolutionary fitness of the host bacterium are unknown. The CTXφ prophage, which encodes cholera toxin in Vibrio cholerae, is known to be adjacent to a chromosomally integrated element of unknown function termed the toxin-linked cryptic (TLC). Here we report the characterization of a TLC-related element that corresponds to the genome of a satellite filamentous phage (TLC-Knφ1), which uses the morphogenesis genes of another filamentous phage (fs2φ) to form infectious TLC-Knφ1 phage particles. The TLC-Knφ1 phage genome carries a sequence similar to the dif recombination sequence, which functions in chromosome dimer resolution using XerC and XerD recombinases. The dif sequence is also exploited by lysogenic filamentous phages (for example CTXφ) for chromosomal integration of their genomes. Bacterial cells defective in the dimer resolution often show an aberrant filamentous cell morphology. We found that acquisition and chromosomal integration of the TLC-Knφ1 genome restored a perfect dif site and normal morphology to V.?cholerae wild-type and mutant strains with dif(-) filamentation phenotypes. Furthermore, lysogeny of a dif(-) non-toxigenic V.?cholerae with TLC-Knφ1 promoted its subsequent toxigenic conversion through integration of CTXφ into the restored dif site. These results reveal a remarkable level of cooperative interactions between multiple filamentous phages in the emergence of the bacterial pathogen that causes cholera.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号