首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
现状及发展   1篇
研究方法   2篇
综合类   7篇
  2012年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
4.
5.
6.
No Abstract. . Received 25 January 2006; received after revision 29 March 2006; accepted 2 May 2006  相似文献   
7.
8.
9.
Understanding the determinants of healthy mental ageing is a priority for society today. So far, we know that intelligence differences show high stability from childhood to old age and there are estimates of the genetic contribution to intelligence at different ages. However, attempts to discover whether genetic causes contribute to differences in cognitive ageing have been relatively uninformative. Here we provide an estimate of the genetic and environmental contributions to stability and change in intelligence across most of the human lifetime. We used genome-wide single nucleotide polymorphism (SNP) data from 1,940 unrelated individuals whose intelligence was measured in childhood (age 11 years) and again in old age (age 65, 70 or 79 years). We use a statistical method that allows genetic (co)variance to be estimated from SNP data on unrelated individuals. We estimate that causal genetic variants in linkage disequilibrium with common SNPs account for 0.24 of the variation in cognitive ability change from childhood to old age. Using bivariate analysis, we estimate a genetic correlation between intelligence at age 11 years and in old age of 0.62. These estimates, derived from rarely available data on lifetime cognitive measures, warrant the search for genetic causes of cognitive stability and change.  相似文献   
10.
Ma D  Yang CH  McNeill H  Simon MA  Axelrod JD 《Nature》2003,421(6922):543-547
The polarity of Drosophila wing hairs displays remarkable fidelity. Each of the approximately 30,000 wing epithelial cells constructs an actin-rich prehair that protrudes from its distal vertex and points distally. The distal location and orientation of the hairs is virtually error free, thus forming a nearly perfect parallel array. This process is controlled by the planar cell polarity signalling pathway. Here we show that interaction between two tiers of the planar cell polarity signalling mechanism results in the observed high fidelity. The first tier, mediated by the cadherin Fat, dictates global orientation by transducing a directional signal to individual cells. The second tier, orchestrated by the 7-pass transmembrane receptor Frizzled, aligns each cell's polarity with that of its neighbours through the action of an intercellular feedback loop, enabling polarity to propagate from cell to cell. We show that all cells need not respond correctly to the presumably subtle signal transmitted by Fat. Subsequent action of the Frizzled feedback loop is sufficient to align all the cells cooperatively. This economical system is therefore highly robust, and produces virtually error-free arrays.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号