首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   4篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
3.
To understand the evolution of galaxies, we need to know as accurately as possible how many galaxies were present in the Universe at different epochs. Galaxies in the young Universe have hitherto mainly been identified using their expected optical colours, but this leaves open the possibility that a significant population remains undetected because their colours are the result of a complex mix of stars, gas, dust or active galactic nuclei. Here we report the results of a flux-limited I-band survey of galaxies at look-back times of 9 to 12 billion years. We find 970 galaxies with spectroscopic redshifts between 1.4 and 5. This population is 1.6 to 6.2 times larger than previous estimates, with the difference increasing towards brighter magnitudes. Strong ultraviolet continua (in the rest frame of the galaxies) indicate vigorous star formation rates of more than 10-100 solar masses per year. As a consequence, the cosmic star formation rate representing the volume-averaged production of stars is higher than previously measured at redshifts of 3 to 4.  相似文献   
4.
Observations of distant supernovae indicate that the Universe is now in a phase of accelerated expansion the physical cause of which is a mystery. Formally, this requires the inclusion of a term acting as a negative pressure in the equations of cosmic expansion, accounting for about 75 per cent of the total energy density in the Universe. The simplest option for this 'dark energy' corresponds to a 'cosmological constant', perhaps related to the quantum vacuum energy. Physically viable alternatives invoke either the presence of a scalar field with an evolving equation of state, or extensions of general relativity involving higher-order curvature terms or extra dimensions. Although they produce similar expansion rates, different models predict measurable differences in the growth rate of large-scale structure with cosmic time. A fingerprint of this growth is provided by coherent galaxy motions, which introduce a radial anisotropy in the clustering pattern reconstructed by galaxy redshift surveys. Here we report a measurement of this effect at a redshift of 0.8. Using a new survey of more than 10,000 faint galaxies, we measure the anisotropy parameter beta = 0.70 +/- 0.26, which corresponds to a growth rate of structure at that time of f = 0.91 +/- 0.36. This is consistent with the standard cosmological-constant model with low matter density and flat geometry, although the error bars are still too large to distinguish among alternative origins for the accelerated expansion. The correct origin could be determined with a further factor-of-ten increase in the sampled volume at similar redshift.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号