首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
研究方法   1篇
综合类   9篇
  2008年   2篇
  2005年   2篇
  2003年   2篇
  2000年   1篇
  1999年   2篇
  1990年   1篇
排序方式: 共有10条查询结果,搜索用时 218 毫秒
1
1.
2.
Maxmen A  Browne WE  Martindale MQ  Giribet G 《Nature》2005,437(7062):1144-1148
Independent specialization of arthropod body segments has led to more than a century of debate on the homology of morphologically diverse segments, each defined by a lateral appendage and a ganglion of the central nervous system. The plesiomorphic composition of the arthropod head remains enigmatic because variation in segments and corresponding appendages is extreme. Within extant arthropod classes (Chelicerata, Myriapoda, Crustacea and Hexapoda--including the insects), correspondences between the appendage-bearing second (deutocerebral) and third (tritocerebral) cephalic neuromeres have been recently resolved on the basis of immunohistochemistry and Hox gene expression patterns. However, no appendage targets the first ganglion, the protocerebrum, and the corresponding segmental identity of this anterior region remains unclear. Reconstructions of stem-group arthropods indicate that the anteriormost region originally might have borne an ocular apparatus and a frontal appendage innervated by the protocerebrum. However, no study of the central nervous system in extant arthropods has been able to corroborate this idea directly, although recent analyses of cephalic gene expression patterns in insects suggest a segmental status for the protocerebral region. Here we investigate the developmental neuroanatomy of a putative basal arthropod, the pycnogonid sea spider, with immunohistochemical techniques. We show that the first pair of appendages, the chelifores, are innervated at an anterior position on the protocerebrum. This is the first true appendage shown to be innervated by the protocerebrum, and thus pycnogonid chelifores are not positionally homologous to appendages of extant arthropods but might, in fact, be homologous to the 'great appendages' of certain Cambrian stem-group arthropods.  相似文献   
3.
4.
Genes have a major role in the control of high-density lipoprotein (HDL) cholesterol (HDL-C) levels. Here we have identified two Tangier disease (TD) families, confirmed 9q31 linkage and refined the disease locus to a limited genomic region containing the gene encoding the ATP-binding cassette transporter (ABC1). Familial HDL deficiency (FHA) is a more frequent cause of low HDL levels. On the basis of independent linkage and meiotic recombinants, we localized the FHA locus to the same genomic region as the TD locus. Mutations in ABC1 were detected in both TD and FHA, indicating that TD and FHA are allelic. This indicates that the protein encoded by ABC1 is a key gatekeeper influencing intracellular cholesterol transport, hence we have named it cholesterol efflux regulatory protein (CERP).  相似文献   
5.
M Q Martindale  M Shankland 《Nature》1990,347(6294):672-674
Segmentation occurs in several animal phyla, and the cellular mechanisms generating this structural periodicity vary considerably. In the leech, an annelid worm, segmental founder cells arise through a fixed cell lineage (Fig. 1), and come together in a longitudinally repeating array through a stereotyped pattern of morphogenesis. In this paper we demonstrate that founder cells forced to differentiate in a foreign segmental environment give rise to their normal, segment-specific clones of neuronal descendants, even in segments in which those neuronal phenotypes would not normally be observed. These findings indicate that the individual founder cells possess segmental identity at or shortly after the time of their birth, and further suggest that such identities are established by a mechanism in which the parent stem cell 'counts' mitotic cycles.  相似文献   
6.
Broad phylogenomic sampling improves resolution of the animal tree of life   总被引:1,自引:0,他引:1  
Long-held ideas regarding the evolutionary relationships among animals have recently been upended by sometimes controversial hypotheses based largely on insights from molecular data. These new hypotheses include a clade of moulting animals (Ecdysozoa) and the close relationship of the lophophorates to molluscs and annelids (Lophotrochozoa). Many relationships remain disputed, including those that are required to polarize key features of character evolution, and support for deep nodes is often low. Phylogenomic approaches, which use data from many genes, have shown promise for resolving deep animal relationships, but are hindered by a lack of data from many important groups. Here we report a total of 39.9 Mb of expressed sequence tags from 29 animals belonging to 21 phyla, including 11 phyla previously lacking genomic or expressed-sequence-tag data. Analysed in combination with existing sequences, our data reinforce several previously identified clades that split deeply in the animal tree (including Protostomia, Ecdysozoa and Lophotrochozoa), unambiguously resolve multiple long-standing issues for which there was strong conflicting support in earlier studies with less data (such as velvet worms rather than tardigrades as the sister group of arthropods), and provide molecular support for the monophyly of molluscs, a group long recognized by morphologists. In addition, we find strong support for several new hypotheses. These include a clade that unites annelids (including sipunculans and echiurans) with nemerteans, phoronids and brachiopods, molluscs as sister to that assemblage, and the placement of ctenophores as the earliest diverging extant multicellular animals. A single origin of spiral cleavage (with subsequent losses) is inferred from well-supported nodes. Many relationships between a stable subset of taxa find strong support, and a diminishing number of lineages remain recalcitrant to placement on the tree.  相似文献   
7.
Unexpected complexity of the Wnt gene family in a sea anemone   总被引:1,自引:0,他引:1  
The Wnt gene family encodes secreted signalling molecules that control cell fate in animal development and human diseases. Despite its significance, the evolution of this metazoan-specific protein family is unclear. In vertebrates, twelve Wnt subfamilies were defined, of which only six have counterparts in Ecdysozoa (for example, Drosophila and Caenorhabditis). Here, we report the isolation of twelve Wnt genes from the sea anemone Nematostella vectensis, a species representing the basal group within cnidarians. Cnidarians are diploblastic animals and the sister-group to bilaterian metazoans. Phylogenetic analyses of N. vectensis Wnt genes reveal a thus far unpredicted ancestral diversity within the Wnt family. Cnidarians and bilaterians have at least eleven of the twelve known Wnt gene subfamilies in common; five subfamilies appear to be lost in the protostome lineage. Expression patterns of Wnt genes during N. vectensis embryogenesis indicate distinct roles of Wnts in gastrulation, resulting in serial overlapping expression domains along the primary axis of the planula larva. This unexpectedly complex inventory of Wnt family signalling factors evolved in early multi-cellular animals about 650 million years (Myr) ago, predating the Cambrian explosion by at least 100 Myr (refs 5, 8). It emphasizes the crucial function of Wnt genes in the diversification of eumetazoan body plans.  相似文献   
8.
9.
Hejnol A  Martindale MQ 《Nature》2008,456(7220):382-386
Most bilaterian animals possess a through gut with a separate mouth and anus. It is commonly believed that during the transition from radial to bilateral symmetry, both openings evolved simultaneously by the lateral closure of a slit-like blastopore. Molecular phylogenies however, place the acoel flatworms, which have only one opening to their digestive system, as the sister group to all remaining Bilateria. To address how this single body opening is related to the mouth and anus of the protostomes and deuterostomes, we studied the expression of genes involved in bilaterian foregut and hindgut patterning during the development of the acoel Convolutriloba longifissura. Here we show that the genes brachyury and goosecoid are expressed in association with the acoel mouth, suggesting that this single opening is homologous to the mouth of other bilaterians. In addition, we find that the genes caudal, orthopedia and brachyury-which are expressed in various bilaterian hindguts-are expressed in a small region at the posterior end of the animal, separated from the anterior oral brachyury-expressing region by a dorsal domain of ectodermal bmp2/4 expression. These results contradict the hypothesis that the bilaterian mouth and anus evolved simultaneously from a common blastoporal opening, and suggest that a through gut might have evolved independently in different animal lineages.  相似文献   
10.
Two small RNAs regulate the timing of Caenorhabditis elegans development. Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA, and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs. Here we have detected let-7 RNAs of approximately 21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila, at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号