首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2011年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Mitchell MW  Lundeen JS  Steinberg AM 《Nature》2004,429(6988):161-164
Interference phenomena are ubiquitous in physics, often forming the basis of demanding measurements. Examples include Ramsey interferometry in atomic spectroscopy, X-ray diffraction in crystallography and optical interferometry in gravitational-wave studies. It has been known for some time that the quantum property of entanglement can be exploited to perform super-sensitive measurements, for example in optical interferometry or atomic spectroscopy. The idea has been demonstrated for an entangled state of two photons, but for larger numbers of particles it is difficult to create the necessary multiparticle entangled states. Here we demonstrate experimentally a technique for producing a maximally entangled three-photon state from initially non-entangled photons. The method can in principle be applied to generate states of arbitrary photon number, giving arbitrarily large improvement in measurement resolution. The method of state construction requires non-unitary operations, which we perform using post-selected linear-optics techniques similar to those used for linear-optics quantum computing.  相似文献   
2.
Lundeen JS  Sutherland B  Patel A  Stewart C  Bamber C 《Nature》2011,474(7350):188-191
The wavefunction is the complex distribution used to completely describe a quantum system, and is central to quantum theory. But despite its fundamental role, it is typically introduced as an abstract element of the theory with no explicit definition. Rather, physicists come to a working understanding of the wavefunction through its use to calculate measurement outcome probabilities by way of the Born rule. At present, the wavefunction is determined through tomographic methods, which estimate the wavefunction most consistent with a diverse collection of measurements. The indirectness of these methods compounds the problem of defining the wavefunction. Here we show that the wavefunction can be measured directly by the sequential measurement of two complementary variables of the system. The crux of our method is that the first measurement is performed in a gentle way through weak measurement, so as not to invalidate the second. The result is that the real and imaginary components of the wavefunction appear directly on our measurement apparatus. We give an experimental example by directly measuring the transverse spatial wavefunction of a single photon, a task not previously realized by any method. We show that the concept is universal, being applicable to other degrees of freedom of the photon, such as polarization or frequency, and to other quantum systems--for example, electron spins, SQUIDs (superconducting quantum interference devices) and trapped ions. Consequently, this method gives the wavefunction a straightforward and general definition in terms of a specific set of experimental operations. We expect it to expand the range of quantum systems that can be characterized and to initiate new avenues in fundamental quantum theory.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号