首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
现状及发展   12篇
综合类   18篇
自然研究   3篇
  2019年   1篇
  2016年   1篇
  2012年   1篇
  2011年   3篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1991年   3篇
  1990年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1970年   3篇
  1965年   2篇
排序方式: 共有33条查询结果,搜索用时 0 毫秒
1.
D A Parsell  Y Sanchez  J D Stitzel  S Lindquist 《Nature》1991,353(6341):270-273
Most eukaryotic cells produce proteins with relative molecular masses in the range of 100,000 to 110,000 after exposure to high temperatures. These proteins have been studied only in yeast and mammalian cells. In Saccharomyces cerevisiae, heat-shock protein hsp104 is vital for tolerance to heat, ethanol and other stresses. The mammalian hsp110 protein is nucleolar and redistributes with growth state, nutritional conditions and heat shock. The relationships between hsp110, hsp104 and the high molecular mass heat-shock proteins of other organisms were unknown. We report here that hsp104 is a member of the highly conserved ClpA/ClpB protein family first identified in Escherichia coli and that additional heat-inducible members of this family are present in Schizosaccharomyces pombe and in mammals. Mutagenesis of two putative nucleotide-binding sites in hsp104 indicates that both are essential for function in thermotolerance.  相似文献   
2.
True HL  Lindquist SL 《Nature》2000,407(6803):477-483
A major enigma in evolutionary biology is that new forms or functions often require the concerted effects of several independent genetic changes. It is unclear how such changes might accumulate when they are likely to be deleterious individually and be lost by selective pressure. The Saccharomyces cerevisiae prion [PSI+] is an epigenetic modifier of the fidelity of translation termination, but its impact on yeast biology has been unclear. Here we show that [PSI+] provides the means to uncover hidden genetic variation and produce new heritable phenotypes. Moreover, in each of the seven genetic backgrounds tested, the constellation of phenotypes produced was unique. We propose that the epigenetic and metastable nature of [PSI+] inheritance allows yeast cells to exploit pre-existing genetic variation to thrive in fluctuating environments. Further, the capacity of [PSI+] to convert previously neutral genetic variation to a non-neutral state may facilitate the evolution of new traits.  相似文献   
3.
But yeast prion offers clues about evolution   总被引:2,自引:0,他引:2  
Lindquist S 《Nature》2000,408(6808):17-18
  相似文献   
4.
5.
6.
7.
8.
Summary A new sulfated polyhydroxy benzaldehyde has been isolated from extracts of the temperate colonial ascidianPolyclinum planum. The structure of the new metabolite was solved by an X-ray crystallographic study. The highest concentration of this metabolite was found in the zooid-rich outer layers of this ascidian suggesting that it may represent a potential chemical defense against predators.  相似文献   
9.
Krishnan R  Lindquist SL 《Nature》2005,435(7043):765-772
Self-perpetuating changes in the conformations of amyloidogenic proteins play vital roles in normal biology and disease. Despite intense research, the architecture and conformational conversion of amyloids remain poorly understood. Amyloid conformers of Sup35 are the molecular embodiment of the yeast prion known as [PSI], which produces heritable changes in phenotype through self-perpetuating changes in protein folding. Here we determine the nature of Sup35's cooperatively folded amyloid core, and use this information to investigate central questions in prion biology. Specific segments of the amyloid core form intermolecular contacts in a 'Head-to-Head', 'Tail-to-Tail' fashion, but the 'Central Core' is sequestered through intramolecular contacts. The Head acquires productive interactions first, and these nucleate assembly. Variations in the length of the amyloid core and the nature of intermolecular interfaces form the structural basis of distinct prion 'strains', which produce variant phenotypes in vivo. These findings resolve several problems in yeast prion biology and have broad implications for other amyloids.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号